The fastest light-driven current source

September 26, 2017
This visualisation shows layers of graphene used for membranes. Credit: University of Manchester

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond—a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster than the most efficient transistors today.

Scientists have already shown that it is possible to steer electrons with light waves in gases, insulating materials and semiconductors. Thus, in principle, it is possible to control current. However, this concept has not yet been applied to metals as light cannot usually penetrate the material to control the electrons. To avoid this effect, physicists in the working groups of Prof. Dr. Peter Hommelhoff and Prof. Dr. Heiko Weber used graphene, a semimetal consisting of only a single layer of carbon atoms. Even though graphene is an excellent conductor, it is thin enough to let some light penetrate the material and move the electrons.

For their experiments, the scientists fired extremely short laser pulses with specially engineered waveforms onto graphene. When these waves hit the graphene, the electrons inside were hurled in one direction, like a whiplash. "Under intense optical fields, a current was generated within a fraction of an optical cycle—a half-femtosecond. It was surprising that despite these enormous forces, quantum mechanics still plays a key role," explains Dr. Takuya Higuchi from the Chair of Laser Physics, the first author of the publication.

The researchers discovered that the current generation process in the follows complicated quantum mechanics. The electrons travel from their initial state to the excited state by two paths rather than one—similar to a forked road leading to the same destination. Like a wave, the electrons can split at the fork and flow on both roads simultaneously. Depending on the relative phase between the split electron waves, when they meet again, the current can be very large, or not present at all. "This is like a water wave. Imagine a wave that breaks against a building wall and flows to the left and the right of the building at the same time. At the end of the building, both parts meet again. If the partial waves meet at their peak, a very large wave results and current flows. If one wave is at its peak, the other at its lowest point, the two cancel one another out, and there is no current," says Prof. Dr. Peter Hommelhoff from the Chair of Laser Physics. "We can use the to regulate how the move and how much electricity is generated."

The results are another important step in uniting electronics and optics. In the future, the method could open a door for realizing ultrafast electronics operating at optical frequencies.

Explore further: Using lasers to create ultra-short pulses

More information: Takuya Higuchi et al, Light-field-driven currents in graphene, Nature (2017). DOI: 10.1038/nature23900

Related Stories

Using lasers to create ultra-short pulses

March 15, 2017

Physicists at Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) have entered new territory with regard to the pulsing of electron beams. Their method could soon be used to develop electron microscopes suitable for ...

The wave nature of light in super-slow motion

July 12, 2017

Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Friedrich Schiller University Jena (FSU) have accomplished a quantum leap in light research. They have managed to capture the behaviour of extremely ...

Hollow atoms: The consequences of an underestimated effect

September 11, 2017

The "hollow atoms", which are being produced in the labs of TU Wien (Vienna) are quite exotic objects. Their electrons are in a state of extremely high energy (so called Rydberg states), but when they are shot through another ...

Observing electrons surfing waves of light on graphene

June 9, 2017

Researchers have studied how light can be used to observe the quantum nature of an electronic material. They captured light in graphene and slowed it down to the speed of the material's electrons. Then electrons and light ...

High-speed march through a layer of graphene

October 5, 2015

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta, scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität ...

Three layers of graphene reveals a new kind of magnet

February 23, 2017

Metals have a large density of electrons and to be able to see the wave nature of electrons one has to make metallic wires that are only a few atoms wide. However, in graphene - one atom thick graphite—the density of electrons ...

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.