Observing electrons surfing waves of light on graphene

June 9, 2017
Electrons and light are moving in concert along the graphene sheet. Credit: ICFO/ F. Vialla

Researchers have studied how light can be used to observe the quantum nature of an electronic material. They captured light in graphene and slowed it down to the speed of the material's electrons. Then electrons and light started to move in concert, manifesting their quantum nature at such large scale that it could observed with a special type of microscope.

The experiments were performed with ultra-high-quality . To excite and image the ultra-slow ripples of in the graphene (also called plasmons), the researchers used a special antenna for light that scans the surface at a distance of a few nanometers. With this near-field nanoscope, they saw that the light ripples on the graphene moved more than 300 times more slowly than light, dramatically diverging from what is suggested by classical physics laws.

The work has been published in Science by ICFO researchers Dr. Mark Lundeberg, Dr. Achim Woessner, led by ICREA Prof. at ICFO Frank Koppens, in collaboration with Prof. Hillenbrand from Nanogune, Prof. Polini from IIT and Prof. Hone from Columbia University.

In reference to the accomplished experiments, Prof. Koppens says, "Usually, it is very difficult to probe the quantum world, and to do so requires ; here we could observe it with light at room temperature."

This technique paves the way for exploring many new types quantum materials, including superconductors or topological materials that allow for quantum information processing with topological qubits. In addition, Prof. Hillenbrand states that "this could just be the beginning of a new era of near field nanoscopy."

Prof. Polini says, "This discovery may eventually lead to understanding in a truly microscopic fashion complex quantum phenomena that occur when matter is subject to ultra-low temperatures and very high magnetic fields, like the fractional quantum Hall effect."

Explore further: Graphene plasmons go ballistic

More information: Tuning quantum nonlocal effects in graphene plasmonics, Science (2017). DOI: 10.1126/science.aan2735

Related Stories

Graphene plasmons go ballistic

January 12, 2015

Squeezing light into tiny circuits and controlling its flow electrically is a holy grail that has become a realistic scenario thanks to the discovery of graphene. This tantalizing achievement is realized by exploiting so-called ...

Using graphene to create quantum bits

May 18, 2017

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits—or qubits—that are stable, meaning they are not much affected by changes in their environment. This normally needs ...

Recommended for you

The microscopic origin of efficiency droop in LEDs

November 21, 2017

Light-emitting diodes—or LEDs, as they are commonly known—have been slowly replacing incandescent light bulbs in applications ranging from car taillights to indicators on electronics since their invention in the 1960s.

Borophene shines alone as 2-D plasmonic material

November 20, 2017

An atom-thick film of boron could be the first pure two-dimensional material able to emit visible and near-infrared light by activating its plasmons, according to Rice University scientists.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.