Brilliant iron molecule could provide cheaper solar energy

November 30, 2018, Lund University
The new iron molecule. Credit: Nils Rosemann

For the first time, researchers have succeeded in creating an iron molecule that can function both as a photocatalyst to produce fuel and in solar cells to produce electricity. The results indicate that the iron molecule could replace the more expensive and rarer metals used today.

Some photocatalysts and are based on a technology that involves containing metals, known as . The task of the complexes in this context is to absorb solar rays and utilise their energy. The metals in these molecules pose a major problem, however, as they are rare and expensive metals, such as the noble metals ruthenium, osmium and iridium.

"Our results now show that by using advanced molecule design, it is possible to replace the rare metals with iron, which is common in the Earth's crust and therefore cheap," says Chemistry Professor Kenneth Wärnmark of Lund University in Sweden.

Together with colleagues, Kenneth Wärnmark has for a long time worked to find alternatives to the expensive metals. The focused on iron which, with its six per cent prevalence in the Earth's crust, is significantly easier to source. The researchers have produced their own iron-based molecules whose potential for use in solar energy applications has been proven in previous studies.

In this new study, the researchers have moved one step further and developed a new iron-based molecule with the ability to capture and utilise the energy of solar light for a sufficiently long time for it to react with another molecule. The new iron molecule also has the ability to glow long enough to enable researchers to see iron-based light with the naked eye at room temperature for the first time.

"The good result depends on the fact that we have optimised the around the iron atom," explains colleague Petter Persson of Lund University.

The study is now published in the journal Science. According to the researchers, the iron molecule in question could be used in new types of photocatalysts for the production of solar fuel, either as hydrogen through water splitting or as methanol from carbon dioxide. Furthermore, the new findings open up other potential areas of application for iron molecules, e.g. as materials in light diodes (LEDs).

What surprised the Lund researchers is that they arrived at good results so quickly. In just over five years, they succeeded in making interesting for photochemical applications, with properties largely as good as those of the best noble metals.

"We believed it would take at least ten years," says Kenneth Wärnmark.

Explore further: Modern alchemy creates luminescent iron molecules

More information: Kasper Skov Kjær et al. Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime, Science (2018). DOI: 10.1126/science.aau7160

Related Stories

Modern alchemy creates luminescent iron molecules

March 30, 2017

A group of researchers at Lund University in Sweden have made the first iron-based molecule capable of emitting light. This could contribute to the development of affordable and environmentally friendly materials for e.g. ...

Transition metal complexes: Mixed works better

November 16, 2018

A team at BESSY II has investigated how various iron-complex compounds process energy from incident light. They were able to show why certain compounds have the potential to convert light into electrical energy. The results ...

Solar cells of the future could be based on iron molecules

May 18, 2016

Researchers at Lund University in Sweden have successfully explained how iron-based dyes work on a molecular level in solar cells. The new findings will accelerate the development of inexpensive and environmentally friendly ...

Reducing CO2 with common elements and sunlight

June 26, 2018

An international collaborative research group including Tokyo Institute of Technology, Universite PARIS DIDEROT and CNRS has discovered that CO2 is selectively reduced to CO when a photocatalyst composed of an organic semiconductor ...

Catalyst advance could lead to economical fuel cells

August 30, 2018

Researchers at Washington State University have developed a new way to make low-cost, single-atom catalysts for fuel cells—an advance that could make important clean energy technology more economically viable.

Recommended for you

Carbon fuels go green for renewable energy

December 18, 2018

For decades, scientists have searched for effective ways to remove excess carbon dioxide emissions from the air, and recycle them into products such as renewable fuels. But the process of converting carbon dioxide into useful ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.