The sublimation of solid ice happens just as quickly as the evaporation of liquid water

October 11, 2018, University of Amsterdam
Credit: CC0 Public Domain

One might expect water to evaporate much faster than ice. Surprisingly, researchers from the University of Amsterdam have now shown that for small droplets of ice, this is not the case: ice and water droplets disappear equally quickly. This explains a fact that skiers know well: freshly fallen snow is very different from snow that is a few days old. The results were published in Nature Communications this week.

If we put a glass of on a table and wait for a long time, we expect the water to evaporate, but not the glass itself, or the table. In our experience, solid materials do not evaporate; we therefore intuitively expect ice, also a solid, to not evaporate significantly either. Nevertheless, such a process – known in physics terminology assublimation– does happen: skiers know, for example, that even if the temperature remains below freezing point, a few inches of can disappear in a couple of days.

A surprising result

Although much less studied than the evaporation of liquids, the sublimation of solid ice has important consequences, as it impacts the climate (since ice reflects the sunlight) as well as the size and shape of ice particles in clouds (producing snowflakes, hailstones and ice pellets) and is of paramount importance for the formation of complex erosion patterns such as snow penitentes in snow fields at high altitudes.

In research that was published in Nature Communications this week, physicists Etienne Jambon-Puillet, Noushine Shahidzadeh and Daniel Bonn from the University of Amsterdam studied the sublimation of small ice drops and snowflakes. Surprisingly, they found that under the same conditions, the sublimation of a frozen ice droplet happens just as quickly as the evaporation of the same drop when it is composed of liquid water.

Diffusion sets the limit

The researchers show that this surprising effect happens because both for and for ice, the speed of evaporation is limited by the process of diffusion: the way in which the resulting water vapor spreads slowly through the air. This conclusion holds for ice droplets, but also for snowflakes: these become more rounded during sublimation (see figure); a process that was previously attributed to the influence of the underlying . The researchers now argue that this crystalline structure is not as important as was previously thought: their diffusion arguments are sufficient to quantitatively explain the evolution of the snowflake shapes observed in experiments.

The results therefore explain the difference between freshly fallen snow and snow of a few days old. But the conclusions are not just interesting for those who love to ski, as the applications are not limited to ice drops or snowflakes. The findings equally apply to the dissolution of small crystals, as their dynamics is governed by the same physics. Thus, the results can also be applied in controlling the size and shape of nanoparticles and salt crystals or the dissolution rate of pharmaceuticals.

Explore further: Physicist's Snowflake Images Get Stuck

More information: Etienne Jambon-Puillet et al. Singular sublimation of ice and snow crystals, Nature Communications (2018). DOI: 10.1038/s41467-018-06689-x

Related Stories

Physicist's Snowflake Images Get Stuck

October 15, 2006

Physicist Kenneth Libbrecht’s snowflake images have gotten stuck--on a stamp. Last week the United States Postal Service issued four new 39-cent commemorative postage stamps based on Libbrecht’s high-resolution microscope ...

Make your own flake

December 20, 2010

With little more than a plastic soda bottle, some fishing line, a sponge, and dry ice, anyone can make it snow, make it snow, make it snow... one flake at a time.

There could be snow on Mars – here's how that's possible

August 22, 2017

Given that there are ambitious plans to colonise Mars in the near future, it is surprising how much we still have to learn about what it would be like to actually live on the planet. Take the weather, for instance. We know ...

How ice in clouds is born

November 8, 2017

Something almost magical happens when you put a tray full of sloshing, liquid water into a freezer and it comes out later as a rigid, solid crystal of ice. Chemists at the University of Utah have pulled back the curtain a ...

Recommended for you

Sculpting stable structures in pure liquids

February 21, 2019

Oscillating flow and light pulses can be used to create reconfigurable architecture in liquid crystals. Materials scientists can carefully engineer concerted microfluidic flows and localized optothermal fields to achieve ...

How to freeze heat conduction

February 21, 2019

Physicists have discovered a new effect, which makes it possible to create excellent thermal insulators which conduct electricity. Such materials can be used to convert waste heat into electrical energy.

Water is more homogeneous than expected

February 21, 2019

In order to explain the known anomalies in water, some researchers assume that water consists of a mixture of two phases, even under ambient conditions. However, new X-ray spectroscopic analyses at BESSY II, ESRF and Swiss ...

Correlated nucleons may solve 35-year-old mystery

February 20, 2019

A careful re-analysis of data taken at the Department of Energy's Thomas Jefferson National Accelerator Facility has revealed a possible link between correlated protons and neutrons in the nucleus and a 35-year-old mystery. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.