'Soil probiotics' promise bigger, healthier crops, but there's a downside

October 23, 2018 by Adam Frew, The Conversation
Crops, soils and fungus are a tricky mix. Credit: Jan Kroon, CC BY

More than half the world's plant-derived energy intake comes from just three crops: rice, wheat and maize. These crops, like most land plants, live in an evolutionarily ancient partnership with a certain type of fungus, called arbuscular mycorrhizal fungi.

These penetrate plants' roots, even entering the root cells themselves. In a win-win relationship, the fungi provide the plants with crucial nutrients and the plant provides the fungi with sugar.

By helping plants take up nutrients from the soil, these fungi can enhance , increase pest resistance, and reduce the need for fertiliser. So it's hardly surprising that there has been a long-held interest in harnessing these soil-dwelling fungi for agriculture.

But our research shows that in some cases these fungi can harm instead of helping them. This means we need to proceed with caution in pursuing the benefits of using these fungi as fertilisers.

Biofertilisers

The idea of using arbuscular mycorrhizal fungi as "biofertilisers" is not new. Many companies already sell fungal products that boost crop growth and mineral uptake.

Yet the effects of these biofertilisers on crops are actually highly variable. And despite the growing market interest, there is little proof they are necessarily beneficial in every situation.

Fungi associate with plant roots, forming a symbiotic relationship. Created with BioRender

Biofertilisers can boost plant growth and pest resistance, but this effect often depends on the context. Different species of arbuscular mycorrhizal fungi can provide different benefits, or sometimes no benefit at all.

Results can vary between crops too. One cultivar might get a significant boost from biofertiliser, whereas another one may not. Differences in soil type, nutrient availability, and even season can also affect the outcome.

To work properly, fungal biofertilisers also need to be compatible with local conditions, including the microbes that are already present in the soil. A crucial question is whether the inoculant fungi are superior competitors to the "native" fungi already established? What's more, little is known of the long-term effects of introducing these fungi to the soil and surrounding ecosystem.

Fungal friends or foes?

Mycorrhizal fungi can also have negative effects on crops. In our research, my colleagues and I explored the effects of an arbuscular mycorrhizal fungal community on the growth of wheat and its resistance to tiny worms that attack the roots. These pests, called plant-parasitic nematodes, cause an estimated US$80 billion per year in crop damage.

Arbuscular mycorrhizal fungi associate with plants by colonising their roots.

We found that fungal inoculation actually reduced and suppressed important defence-related compounds in the roots. We also observed an increase in nematode populations in the , potentially due to lowered plant defences.

Of course this is only one example. And this experiment was not done in the field. Yet it is not the only study to have identified potentially negative consequences of biofertilisers.

Soil probiotics

Biofertilisers are similar to gut probiotics, in that both approaches aim to inject "good" microbes into places where they will prove beneficial. But just as the widely touted health benefits of gut probiotics don't work for everyone, our results paint a similar picture for .

Put simply, there isn't a one-size-fits-all fungal biofertiliser that will boost every crop in every environment. But that doesn't mean we shouldn't work towards improving our ability to use these fungi. In fact, this should be a priority – biofertilisers can be a powerful tool to help tackle the challenges posed by population growth and climate change.

In the right situation, biofertilisers can dramatically increase crop yields and , potentially helping us grow more food, more sustainably. But we need to learn more before we can turn this ancient symbiosis between and fungi to our advantage.

Arbuscular mycorrhizal fungi reduced crop growth and suppressed important defence-related compounds which may have caused an increase in nematode populations in the soil. Created with 'Biorender'

Explore further: Plant hormone makes space farming a possibility

Related Stories

Plant hormone makes space farming a possibility

October 18, 2018

With scarce nutrients and weak gravity, growing potatoes on the moon or on other planets seems unimaginable. But the plant hormone strigolactone could make it possible, plant biologists from the University of Zurich have ...

Plant relationships break down when they meet new fungi

May 1, 2018

Gijsbert Werner, Postdoctoral Fellow and Stuart West, Professor of Evolutionary Biology, both in the Department of Zoology, explain the process of plant cooperation, in relation to their new study published in PNAS, which ...

Leaf molecules as markers for mycorrhizal associations

August 28, 2018

In nature, most plants establish mutual relationships with root fungi, so-called mycorrhiza. Mycorrhizal fungi facilitate the plants' nutrient uptake and help them thrive under extreme conditions. Researchers at the Max Planck ...

Fungi may help drought-stressed wheat

December 17, 2015

Scientists at Aarhus University have discovered that fungi associated with plant roots may improve growth and yield of drought-stressed wheat.

Recommended for you

Poxvirus hijacks cell movement to spread infection

November 12, 2018

Vaccinia virus, a poxvirus closely related to smallpox and monkeypox, tricks cells it has infected into activating their own cell movement mechanism to rapidly spread the virus in cells and mice, according to a new UCL-led ...

Researchers discover genes that give vegetables their shape

November 12, 2018

From elongated oblongs to near-perfect spheres, vegetables come in almost every size and shape. But what differentiates a fingerling potato from a russet or a Roma tomato from a beefsteak? Researchers at the University of ...

Warming hurting shellfish, aiding predators, ruining habitat

November 11, 2018

Valuable species of shellfish have become harder to find on the East Coast because of degraded habitat caused by a warming environment, according to a pair of scientists that sought to find out whether environmental factors ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.