Permanent, wireless self-charging system using NIR band

October 8, 2018, The Korea Advanced Institute of Science and Technology (KAIST)
Permanent, wireless self-charging system using NIR band
Figure 1. a) Conceptual NIR-driven self-charging system including a flexible CQD PVs module and an interdigitatedly structured LIB. b) Photographic images of a conventional wearable healthcare bracelet and a self-charging system-integrated wearable device. Credit: The Korea Advanced Institute of Science and Technology (KAIST)

As wearable devices are emerging, there are numerous studies on wireless charging systems. Here, a KAIST research team has developed a permanent, wireless self-charging platform for low-power wearable electronics by converting near-infrared (NIR) band irradiation to electrical energy. This novel technology can be applied to flexible, wearable charging systems without needing any attachments.

Colloidal-quantum-dots (CQDs) are promising materials for manufacturing semiconductors; in particular, PbS-based CQDs have facile optical tunability from the visible to infrared wavelength region. Hence, they can be applied to various devices, such as lighting, photovoltaics (PVs), and photodetectors.

Continuous research on CQD-based optoelectronic devices has increased their power conversion efficiency (PCE) to 12 percent; however, applicable fields have not yet been found for them. Meanwhile, wearable electronic devices commonly face the problem of inconvenient charging systems because users have to constantly charge batteries attached to an energy source.

A joint team led by Professor Jung-Yong Lee from the Graduate School of Energy, Environment, Water and Sustainability and Jang Wok Choi from Seoul National University decided to apply CQD PVs, which have high quantum efficiency in NIR band to self-charging systems on .

They employed a stable and efficient NIR energy conversion strategy. The system was comprised of a PbS CQD-based PV module, a flexible interdigitated lithium-ion battery, and various types of NIR-transparent films.

Permanent, wireless self-charging system using NIR band
Figure 2. Illustration of the CQD PVs structure and performance of the wireless self-charging platform. Credit: The Korea Advanced Institute of Science and Technology (KAIST)

The team removed the existing battery from the already commercialized wearable healthcare bracelet and replaced it with the proposed self-charging system. They confirmed that the system can be applied to a low power wearable device via the NIR band.

There have been numerous platforms using solar irradiation, but the newly developed platform has more advantages because it allows conventional devices to be much more comfortable to wear and charged easily in everyday life using various irradiation sources for constant charging.

With this aspect, the proposed platform facilitates more flexible designs, which are the important component for actual commercialization. It also secures higher photostability and efficient than existing structures.

Professor Lee said, "By using the NIR band, we proposed a new approach to solve charging system issues of wearable devices. I believe that this platform will be a novel platform for energy conversion and that its application can be further extended to various fields, including mobiles, IoTs, and drones."

Explore further: Solar supercapacitor could power future of wearable sensors

More information: Se-Woong Baek et al. A Colloidal-Quantum-Dot-Based Self-Charging System via the Near-Infrared Band, Advanced Materials (2018). DOI: 10.1002/adma.201707224

Related Stories

First supercapacitor that can be charged by human body heat

November 11, 2016

Dr. Choongho Yu, Gulf Oil/Thomas A. Dietz Career Development Professor II in the Department of Mechanical Engineering at Texas A&M University, and his graduate student group has developed a new concept of electrical energy ...

Aqueous storage device needs only 20 seconds to go

March 1, 2018

A KAIST research team has developed a new hybrid energy storage device that can be charged in less than a half-minute. It employs aqueous electrolytes instead of flammable organic solvents, so it is both environmentally friendly ...

Recommended for you

Team breaks world record for fast, accurate AI training

November 7, 2018

Researchers at Hong Kong Baptist University (HKBU) have partnered with a team from Tencent Machine Learning to create a new technique for training artificial intelligence (AI) machines faster than ever before while maintaining ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.