Research on light-matter interaction could improve electronic and optoelectronic devices

October 10, 2018, Rensselaer Polytechnic Institute
Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices Credit: Rensselaer Polytechnic Institute

A paper published in Nature Communications by Sufei Shi, assistant professor of chemical and biological engineering at Rensselaer, increases our understanding of how light interacts with atomically thin semiconductors and creates unique excitonic complex particles, multiple electrons, and holes strongly bound together. These particles possess a new quantum degree of freedom, called "valley spin." The "valley spin" is similar to the spin of electrons, which has been extensively used in information storage such as hard drives and is also a promising candidate for quantum computing.

The paper, titled "Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2," was published in the Sept. 13, 2018, edition of Nature Communications. Results of this research could lead to novel applications in electronic and optoelectronic devices, such as , new types of lasers, and quantum sensing.

Shi's research focuses on low dimensional quantum materials and their quantum effects, with a particular interest in materials with strong light-matter interactions. These materials include graphene, transitional metal dichacogenides (TMDs), such as tungsten diselenide (WSe2), and topological insulators.

TMDs represent a new class of atomically thin semiconductors with superior optical and optoelectronic properties. Optical excitation on the two-dimensional single-layer TMDs will generate a strongly bound electron-hole pair called an exciton, instead of freely moving electrons and holes as in traditional bulk semiconductors. This is due to the giant binding energy in monolayer TMDs, which is orders of magnitude larger than that of conventional semiconductors. As a result, the exciton can survive at room temperature and can thus be used for application of excitonic devices.

As the density of the exciton increases, more electrons and holes pair together, forming four-particle and even five-particle excitonic complexes. An understanding of the many-particle excitonic complexes not only gives rise to a fundamental understanding of the light-matter interaction in two dimensions, it also leads to novel applications, since the many-particle excitonic complexes maintain the "valley spin" properties better than the exciton. However, despite recent developments in the understanding of excitons and trions in TMDs, said Shi, an unambiguous measure of the biexciton-binding energy has remained elusive.

"Now, for the first time, we have revealed the true biexciton state, a unique four-particle complex responding to light," said Shi. "We also revealed the nature of the charged biexciton, a five-particle complex."

At Rensselaer, Shi's team has developed a way to build an extremely clean sample to reveal this unique light-matter interaction. The device was built by stacking multiple atomically thin materials together, including graphene, boron nitride (BN), and WSe2, through van der Waals (vdW) interaction, representing the state-of-the-art fabrication technique of two-dimensional materials.

This work was performed in collaboration with the National High Magnetic Field Laboratory in Tallahasee, Florida, and researchers at the National Institute for Materials Science in Japan, as well as with Shengbai Zhang, the Kodosky Constellation Professor in the Department of Physics, Applied Physics, and Astronomy at Rensselaer, whose work played a critical role in developing a theoretical understanding of the biexciton.

The results of this research could potentially lead to robust many-particle optical physics, and illustrate possible novel applications based on 2-D semiconductors, Shi said. Shi has received funding from the Air Force Office of Scientific Research. Zhang was supported by the Department of Energy, Office of Science.

The research also was recently featured in Nature Nanotechnology.

Explore further: Scientists discover how to control the 'excitation' of electronics

More information: Zhipeng Li et al, Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2, Nature Communications (2018). DOI: 10.1038/s41467-018-05863-5

Cedric Robert. When bright and dark bind together, Nature Nanotechnology (2018). DOI: 10.1038/s41565-018-0281-1

Related Stories

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.