Efficient electrochemical cells for CO2 conversion

October 25, 2018, Cell Press
This illustration is an artist's rendition of the electrolysis process used to convert CO2 to concentrated carbon products. Credit: Ripatti et al.

Scientists at Stanford University have developed electrochemical cells that convert carbon monoxide (CO) derived from CO2 into commercially viable compounds more effectively and efficiently than existing technologies. Their research, published October 25 in the journal Joule, provides a new strategy for capturing CO2 and converting it into chemical feedstocks.

CO2 capture from emission sources is an attractive option for mitigating climate change, but it is an expensive process that harvests a product without commercial value. However, scientists can add value to captured CO2 by using electrolysis, a technique that uses an electric current to break down compounds, to convert it into more desirable products such as ethylene for polymer production or acetate as a reagent for chemical synthesis.

"C2 products such as ethylene, acetate, and ethanol are inherently more valuable than C1 products such as methane because they are versatile ," says senior author Matthew Kanan, an associate professor of chemistry at Stanford University.

While converting CO2 to CO is already commercially possible, developing technology that can produce in-demand C2 chemicals from CO on an is still a challenge. Electrolysis must convert CO into products at a high rate with a low overall energy demand in order to be viable. Previous electrochemical have required a large excess of CO to achieve a high electrolysis rate, which results in dilute products that must be concentrated and purified—a process that requires more energy (at greater expense).

The created by Kanan and his team combat these inefficiencies with a modified design that produces a concentrated stream of ethylene gas and a sodium acetate solution 1,000 times more concentrated than product obtained with previous cells. The cell uses a gas diffusion electrode (GDE) combined with a carefully designed flow field that greatly improves the delivery of CO to the electrode surface and the removal of products. The team also eliminated the need for an electrolyte solution in the cell by interfacing the GDE directly with a membrane. As a result, both ethylene and concentrated acetate solution are produced at the electrode and swept out of the cell in a single vapor stream.

"Prior to this work, the combination of a high electrolysis rate, high CO conversion, and concentrated product streams had not been achieved," says Kanan.

The team is currently scaling up their prototype to determine whether the design needs to be modified to succeed on an industrial scale, with hopes that they can eventually combine their CO electrolysis cells with existing technologies for converting CO2 into CO. The device may also be useful for space exploration, in particular where it is not possible to resupply from Earth. In collaboration with researchers led by John Hogan at the NASA Ames Research Center, the team is working to combine electrochemical synthesis with microbial biosynthesis to recycle the CO2 breathed out by astronauts into food and nutrients.

Explore further: Chemists produce and test novel solid oxide electrolysis cell

More information: Joule, Ripatti et al.: "Carbon Monoxide Gas Diffusion Electrolysis that Produces Concentrated C2 Products with High Single-Pass Conversion" https://www.cell.com/joule/fulltext/S2542-4351(18)30469-0 , DOI: 10.1016/j.joule.2018.10.007

Related Stories

Chemists produce and test novel solid oxide electrolysis cell

September 20, 2018

Researchers of the Institute of Chemical Engineering of Ural Federal University and the Institute of High-temperature Electrochemistry (Ural Branch of the Russian Academy of Sciences have developed new electrochemical cells ...

Transforming carbon dioxide

August 21, 2018

A team of researchers at the University of Delaware's Center for Catalytic Science and Technology (CCST) has discovered a novel two-step process to increase the efficiency of carbon dioxide (CO2) electrolysis, a chemical ...

New technology improves hydrogen manufacturing

September 4, 2018

Industrial hydrogen is closer to being produced more efficiently, thanks to findings outlined in a new paper published by Idaho National Laboratory researchers. In the paper, Dr. Dong Ding and his colleagues detailed advances ...

Improved understanding of industrial electrode processes

August 23, 2018

In the industrial production of chlorine, special electrodes have been recently introduced, which consume much less current than conventional systems. The method requires oxygen to be introduced into a hot, highly concentrated ...

Recommended for you

From receptor structure to new osteoporosis drugs

November 20, 2018

Researchers at the University of Zurich have determined the three-dimensional structure of a receptor that controls the release of calcium from bones. The receptor is now one of the main candidates for developing new drugs ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.