Defects promise quantum communication through standard optical fiber

October 1, 2018, University of Groningen
Illustration of optical polarization of defect spin in silicon carbide Credit: Tom Bosma, University of Groningen

An international team of scientists led by the University of Groningen's Zernike Institute for Advanced Materials created quantum bits that emit photons that describe their state at wavelengths close to those used by telecom providers. These qubits are based on silicon carbide in which molybdenum impurities create color centers. The results were published in the journal npj Quantum Information on 1 October.

By using phenomena like superposition and entanglement, computing and quantum communication promise superior computing powers and unbreakable cryptography. Several successes in transmitting these quantum phenomena through optical fibers have been reported, but this is typically at wavelengths that are incompatible with the standard fibers currently used in worldwide data transmission.

Physicists from the University of Groningen in the Netherlands, together with colleagues from Linköping University and semiconductor company Norstel AB, both in Sweden, have now reported the development of a qubit that transmits information on its status at a of 1,100 nanometers. Furthermore, the mechanism involved can likely be tuned to wavelengths near those used in data transmission (around 1,300 or 1,500 nanometers).

The work started with defects in silicon carbon crystals, explains Ph.D. student Tom Bosma, first author of the paper. "Silicon carbide is a semiconductor, and much work has been done to prevent impurities that affect the properties of the crystals. As a result, there is a huge library of impurities and their impact on the crystal." But these impurities can form what are known as color centers, and these respond to light of specific wavelengths.

Tom Bosma and Carmem Gilardoni in their optical lab at the University of Groningen. Credit: University of Groningen

When lasers shine light at the right energy onto these color centers, electrons in the outer shell of the molybdenum atoms in the silicon carbide crystals are kicked to a higher energy level. When they return to the ground state, they emit their excess energy as a photon. "For impurities, these will be infrared photons with wavelengths near the ones used in data communication," explains Bosma.

This material was the starting point for constructing qubits, says fellow Ph.D. student Carmem Gilardoni, who did a lot of the theoretical work in the paper. "We used a technique called coherent population trapping to create superposition in the color centers." This exploited spin, a quantum mechanical phenomenon that gives the electrons a magnetic moment that can point up or down. This creates a qubit in which the spin states represent 0 or 1.

Gilardoni: "If you apply a magnetic field, the spins align either parallel or anti-parallel to the magnetic field. The interesting thing is that as a result, the ground state for electrons with spin up or spin down is slightly different." When laser light is used to excite the electrons, they subsequently fall back to one of the two ground states. The team, led by Professor in Physics of Quantum Devices Caspar van der Wal, used two lasers, each tuned to move electrons from one of the ground states to the same level of excitation, to create a situation in which a superposition of both spin states evolved in the color center.

Bosma: "After some fine tuning, we managed to produce a qubit in which we had a long-lasting superposition combined with fast switching." Furthermore, the qubit emitted photons with information on the quantum state at infrared wavelengths. Given the large library of impurities that can create in the crystals, the team is confident they can bring this wavelength up to the levels used in standard optical fibers. If they can manage this and produce an even more stable (and thus longer-lasting) superposition, the quantum internet will be a whole lot closer to becoming reality.

Explore further: Researchers discover link between magnetic field strength and temperature

More information: Tom Bosma et al, Identification and tunable optical coherent control of transition-metal spins in silicon carbide, npj Quantum Information (2018). DOI: 10.1038/s41534-018-0097-8

Related Stories

A spin trio for strong coupling

July 26, 2018

To make qubits for quantum computers less susceptible to noise, the spin of an electron or some other particle is preferentially used. Researchers at ETH Zurich have now developed a method that makes it possible to couple ...

A new kind of quantum computer

November 6, 2017

Quantum mechanics incorporates some very non-intuitive properties of matter. Quantum superposition, for example, allows an atom to be simultaneously in two different states with its spin axis pointed both up and down, or ...

Quantum race accelerates development of silicon quantum chip

January 25, 2018

A team of TU Delft scientists led by Professor Vandersypen seeks to create better and more reliable quantum processors. In a neck-and-neck race with competitors, they showed that quantum information of an electron spin can ...

Recommended for you

Compelling evidence for small drops of perfect fluid

December 10, 2018

Nuclear physicists analyzing data from the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy (DOE) Office of Science user facility for nuclear physics research at Brookhaven National ...

Supercomputers without waste heat

December 10, 2018

Generally speaking, magnetism and the lossless flow of electrical current ("superconductivity") are competing phenomena that cannot coexist in the same sample. However, for building supercomputers, synergetically combining ...

Engineers invent groundbreaking spin-based memory device

December 7, 2018

A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability ...

Multichannel vectorial holographic display and encryption

December 7, 2018

Holography is a powerful tool that can reconstruct wavefronts of light and combine the fundamental wave properties of amplitude, phase, polarization, wave vector and frequency. Smart multiplexing techniques (multiple signal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.