Determining the shape of cells

October 29, 2018, Leiden Institute of Physics
Cytoskeleton of a fibroblast cell (red). It turn out that its shape can be described by arcs of one and the same ellipse. The more eccentric this ellipse, the more force the cell exerts. The contractile fibers (hazy red lines) are always aligned with the semi-major axis of a close-by ellipse.

Cells are constantly performing small tasks such as repairing wounds. They exert force by changing shape. But how do cells translate their shape into exerting a force in a specific direction? Experimental and theoretical physicists from Leiden University have now found a clue to answer this question. Cells' shapes turn out to be approximated by arcs of an ellipse. The research was published in Physical Review Letters on October 29th.

Suppose you trip on the sidewalk and get a small graze wound on your elbow. What do you do? Perhaps you should disinfect it, but for the rest: leave it alone. Before we get a chance to think about it, millions of have already started the healing process. Among other things, they close the small gaps in the skin by pulling tissue together. Cells perform this job, like all of their other jobs, by changing their shape. It enables them to exert force and sense their surroundings. People actually do the same thing—they change their posture while fixing a tire or search for the alarm clock in the dark. But how do cells translate their shape into applying a force in a specific direction? A collaboration of experimental and from Leiden University now reports an answer this question. The team, led by Luca Giomi and Thomas Schmidt, discovered that the shape of cells can be well approximated with segments of a particular .

The experimental group of Schmidt imaged the cytoskeleton of a fibroblast cell (see figure) to get a snapshot of its shape. The cytoskeleton is a gel-like material made of small contractile fibers that simultaneously allow cells to keep their structural integrity and exert forces. Meanwhile, the theoretical group of Giomi performed calculations to find out that the curvy shapes around the edge of the cell are parts of one and the same ellipse. Earlier it was assumed that these shapes are part of circles—an assumption that still holds for less mobile cells. The strength of the ' contractile force dictates the ellipse's eccentricity—or slenderness. When the researchers plotted an ellipse on the actual image, their theory turned out to hold experimentally. What's more, the ellipse's semi-major axis always points in the same direction as the cytoskeletal fibers, also in agreement with the theory.

"Circles have no direction, but ellipses do," says PhD student and co-lead author Koen Schakenraad. "So we have found a clue to explain a cell's sense of direction." The discovery is primarily important to fundamental science. In the long run however, the research field could provide vital insights to the medical sector. Schakenraad: "For instance, a major problem with cancer is metastasis. If we understand how metastases have a sense of direction while spreading, this might provide some insight in cancer research."

Explore further: How non-muscle cells find the strength to move

More information: Wim Pomp, Koen Schakenraad, Hayri E. Balcioglu, Hedde van Hoorn, Erik H. J. Danen, Roeland M. H. Merks, Thomas Schmidt and Luca Giomi, 'Cytoskeletal anisotropy controls geometry and forces of adherent cells', Physical Review Letters.

Related Stories

How non-muscle cells find the strength to move

March 29, 2017

Researchers from the Mechanobiology Institute, Singapore (MBI) at the National University of Singapore have described, for the first time, the ordered arrangement of myosin-II filaments in actin cables of non-muscle cells. ...

A single drop of blood makes skin cells line up

September 13, 2018

What happens to skin cells when they are confronted with blood? A team of researchers from Oslo University Hospital, led by Emma Lång and Stig Ove Bøe, performed experiments on blood-deprived cells that were subsequently ...

Scientists find holes in light by tying it in knots

August 1, 2018

A research collaboration including theoretical physicists from the University of Bristol and Birmingham has found a new way of evaluating how light flows through space—by tying knots in it.

Key polarity protein uncovered

March 15, 2018

Northwestern Medicine scientists have identified a protein called CLAMP as crucial to a mechanism that organizes cells and allows some to perform specialized functions, according to a study published in the Journal of Cell ...

Recommended for you

Engineers invent groundbreaking spin-based memory device

December 7, 2018

A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability ...

Multichannel vectorial holographic display and encryption

December 7, 2018

Holography is a powerful tool that can reconstruct wavefronts of light and combine the fundamental wave properties of amplitude, phase, polarization, wave vector and frequency. Smart multiplexing techniques (multiple signal ...

A new 'spin' on kagome lattices

December 7, 2018

Like so many targets of scientific inquiry, the class of material referred to as the kagome magnet has proven to be a source of both frustration and amazement. Further revealing the quantum properties of the kagome magnet ...

How ice particles promote the formation of radicals

December 7, 2018

The production of chlorofluorocarbons, which damage the ozone layer, has been banned as far as possible. However, other substances can also tear holes in the ozone layer in combination with ice particles, such as those found ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.