Brain-eating amoebae halted by silver nanoparticles

October 24, 2018, American Chemical Society

Halloween is just around the corner, and some people will celebrate by watching scary movies about brain-eating zombies. But even more frightening are real-life parasites that feed on the human brain, and they can be harder to kill than their horror-movie counterparts. Now, researchers have developed silver nanoparticles coated with anti-seizure drugs that can kill brain-eating amoebae while sparing human cells. The researchers report their results in ACS Chemical Neuroscience.

Although infections with brain-eating amoebae (Naegleria fowleri) are rare, they are almost always deadly. Most cases result from inhaling warm, dirty water in ponds, hot springs or unchlorinated swimming pools. Another species, Acanthamoeba castellanii, can cause blindness by entering the eyes through dirty contact lenses. Common treatments include , but they often cause severe side effects because of the high doses required for them to enter the brain. Ayaz Anwar and colleagues wondered if three anti-seizure drugs—diazepam, phenobarbitone and phenytoin—could kill amoebae, alone or in combination with . The drugs are already approved by the U.S. Food and Drug Administration and are known to cross the blood-brain barrier. The researchers reasoned that they might be more effective when attached to silver nanoparticles, which can improve the delivery of some drugs and also have their own antimicrobial effects.

The team chemically attached the drugs to silver nanoparticles and examined their ability to kill amoebae. They found that each of the three drugs alone could kill N. fowleri and A. castellanii, but they worked much better when bound to silver nanoparticles. The -nanoparticle combos protected from the microbes, increasing their survival rate compared with untreated infected human cells. The researchers propose that these repurposed drugs, aided by the nanoparticles, might kill amoebae by binding to protein receptors or ion channels on the single-celled organism's membrane.

Explore further: Cancer drug and antidepressants provide clues for treating brain-eating amoeba infections

More information: Ayaz Anwar et al. Clinically-approved drugs against CNS diseases as potential therapeutic agents to target brain-eating amoebae, ACS Chemical Neuroscience (2018). DOI: 10.1021/acschemneuro.8b00484

Abstract
Central nervous system (CNS) infections caused by free-living amoebae such as Acanthamoeba species, Naegleria fowleri etc. are rare but fatal. A major challenge in the treatment against the infections caused by these amoebae is the discovery of novel compounds that can effectively cross the blood-brain barrier to penetrate CNS. It is logical to test clinically-approved drugs against CNS diseases for their potential antiamoebic effects since they are known for effective blood-brain barrier penetration and effect eukaryotic cell targets. The antiamoebic effects of clinically available drugs for seizures targeting gamma-amino butyric acid (GABA) receptor and ion channels were tested against Acanthamoeba castellanii (A. castellanii) belonging to the T4 genotype and Naegleria fowleri (N. fowleri). Three such drugs namely; Diazepam (Valium), Phenobarbitone (Luminal), Phenytoin (Dilantin) and their silver nanoparticles (AgNPs) were evaluated against both trophozoites and cysts stage. Drugs alone and drugs conjugated silver nanoparticles were tested for amoebicidal, cysticidal and host-cells cytotoxicity assays. In vitro amoebicidal assay showed potent amoebicidal effects for Diazepam, Phenobarbitone, and Phenytoin-conjugated AgNPs as compared to drugs alone against A. castellanii and N. fowleri. Nanoparticles were synthesized by sodium borohydride reduction of silver nitrate with drugs as capping agents. Drugs conjugated nanoconjugates were characterized by ultraviolet-visible (UV-vis), and Fourier transform infrared (FT-IR) spectroscopies, and atomic force microscopy (AFM). Furthermore, both drugs and drugs conjugated AgNPs showed compelling cysticidal effects. Drugs conjugations with silver nanoparticles enhanced their antiacanthamoebic activity. Interestingly, amoeba-mediated host cells cytotoxicity was also significantly reduced by drugs alone as well as their nanoconjugates. Since, these drugs are being used to target CNS diseases, their evaluation against brain-eating amoebae seems feasible due to advantages such as; permeability of the blood-brain barrier; established pharmacokinetics and dynamics; FDA approval etc. Given the limited availability of effective drugs against A. castellanii, the clinically available drugs tested here present potential for further in vivo studies.

Related Stories

Video: How silver nanoparticles cut odors

September 20, 2018

Trendy workout clothes may advertise that special silver nanoparticles embedded in the fabric will cut the sweaty odor that builds up from repeated gym visits. It turns out there's some truth to these claims.

Wiping out bacteria with nanoparticle-cotton fibers

July 4, 2017

Silver has been used as an antimicrobial agent for more than 100 years. Today, silver in the form of nanoparticles is incorporated in such products as plastic food containers, medical materials, and clothing. In textiles, ...

Contact lenses are home to pathogenic amoebae

October 20, 2008

Contact lenses increase the risk of infection with pathogenic protozoa that can cause blindness. New research, published in the November issue of the Journal of Medical Microbiology, shows that a high percentage of contact ...

Recommended for you

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...

A way to make batteries almost any shape desired

November 16, 2018

A team of researchers from Korea Advanced Institute of Science and Technology, Harvard University and Korea Research Institute of Chemical Technology has developed a way to make batteries in almost any shape that can be imagined. ...

Graphene flickers at 400Hz in 2500ppi displays

November 16, 2018

With virtual reality (VR) sizzling in every electronic fair, there is a need for displays with higher resolution, frame rates and power efficiency. Now, a joint collaboration of researchers from SCALE Nanotech, Graphenea ...

'Smart skin' simplifies spotting strain in structures

November 15, 2018

Thanks to one peculiar characteristic of carbon nanotubes, engineers will soon be able to measure the accumulated strain in an airplane, a bridge or a pipeline – or just about anything – over the entire surface or down ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.