A pill for delivering biomedical micromotors

September 5, 2018, American Chemical Society
A pill for delivering biomedical micromotors
These pills could soon be used to deliver tiny micromotors in the human body. Credit: American Chemical Society

Using tiny micromotors to diagnose and treat disease in the human body could soon be a reality. But keeping these devices intact as they travel through the body remains a hurdle. Now in a study appearing in ACS Nano, scientists report that they have found a way to encapsulate micromotors into pills. The pill's coating protects the devices as they traverse the digestive system prior to releasing their drug cargo.

About the width of a human hair, micromotors are self-propelled microscopic robots designed to perform a host of biomedical tasks. In previous research, Joseph Wang, Liangfang Zhang and colleagues used micromotors coated with an antibiotic to treat ulcers in . They found that this approach produced better results than just taking the drugs by themselves. However, the researchers noted that body fluids, such as gastric acid and intestinal fluids, can compromise the effectiveness of micromotors and trigger early release of their payloads. In addition, when taken orally in fluid, some of the micromotors can get trapped in the esophagus. To overcome these issues, Wang and Zhang sought to develop a way to protect and carry these devices into the stomach without compromising their mobility or effectiveness.

The researchers created a composed of a pair of sugars—lactose and maltose—that encapsulated tens of thousands of micromotors made of a magnesium/titanium dioxide core loaded with a fluorescent dye cargo. These sugars were chosen because they are easy to mold into tablet, can disintegrate when needed and are nontoxic. When given to laboratory mice, these pills improved the release and retention of the micromotors in the stomach compared to those encapsulated in silica-based tablets or in a liquid solution. The researchers concluded that encapsulating micromotors in traditional pill form improves their ability to deliver medicines to specific targets without diminishing their mobility or performance.

Explore further: Drug-delivering micromotors treat their first bacterial infection in the stomach

More information: Emil Karshalev et al, Micromotor Pills as a Dynamic Oral Delivery Platform, ACS Nano (2018). DOI: 10.1021/acsnano.8b03760

Abstract
Tremendous progress has been made during the past decade toward the design of nano/micromotors with high biocompatibility, multifunctionality, and efficient propulsion in biological fluids, which collectively have led to the initial investigation of in vivo biomedical applications of these synthetic motors. Despite these recent advances in micromotor designs and mechanistic research, significant effort is needed to develop appropriate formulations of micromotors to facilitate their in vivo administration and thus to better test their in vivo applicability. Herein, we present a micromotor pill and demonstrate its attractive use as a platform for in vivo oral delivery of active micromotors. The micromotor pill is comprised of active Mg-based micromotors dispersed uniformly in the pill matrix, containing inactive (lactose/maltose) excipients and other disintegration-aiding (cellulose/starch) additives. Our in vivo studies using a mouse model show that the micromotor pill platform effectively protects and carries the active micromotors to the stomach, enabling their release in a concentrated manner. The micromotor encapsulation and the inactive excipient materials have no effects on the motion of the released micromotors. The released cargo-loaded micromotors propel in gastric fluid, retaining the high-performance characteristics of in vitro micromotors while providing higher cargo retention onto the stomach lining compared to orally administrated free micromotors and passive microparticles. Furthermore, the micromotor pills and the loaded micromotors retain the same characteristics and propulsion behavior after extended storage in harsh conditions. These results illustrate that combining the advantages of traditional pills with the efficient movement of micromotors offer an appealing route for administrating micromotors for potential in vivo biomedical applications.

Related Stories

Manganese dioxide shows potential in micromotors

November 14, 2017

Manganese dioxide could make the preparation of micromotors increasingly cost-effective, opening up new avenues for their use, according to a new study from the University of Eastern Finland.

Micromotors are powered by bacteria, controlled by light

July 13, 2017

(Phys.org)—When researchers deposit a drop of fluid containing thousands of free-swimming, genetically engineered E. coli onto an array of micromotors, within minutes the micromotors begin rotating. Some of the individual ...

Micromotors for energy generation

April 28, 2015

Hydrogen is considered to be the energy source of the future: the first vehicles powered by hydrogen fuel cells are already on the market. However, the problem of hydrogen storage has not been solved in a satisfactory way. ...

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.