You can't tell whether an online restaurant review is fake—but this AI can

September 17, 2018, Aalto University
Was this restaurant review written by a machine or a person? Not so easy, is it? Credit: Aalto University

Researchers find AI-generated reviews and comments pose a significant threat to consumers, but machine learning can help detect the fakes.

Sites like TripAdvisor, Yelp and Amazon display user reviews of products and services. Consumers take heed: nine out of ten people read these peer reviews and trust what they see. In fact, up to 40 percent of users decide to make a purchase based on only a couple of reviews, and great reviews make people spend 30 percent more on their purchases.

Yet not all reviews are legitimate. Fake reviews written by real people are already common on review sites, but the amount of fakes generated by machines is likely to increase substantially.

According to doctoral student Mika Juuti at Aalto University, based on algorithms are nowadays easy, accurate and fast to generate. Most of the time, people are unable to tell the difference between genuine and machine-generated fake reviews.

"Misbehaving companies can either try to boost their sales by creating a positive brand image artificially or by generating fake negative reviews about a competitor. The motivation is, of course, money: are a big business for travel destinations, hotels, service providers and consumer products," says Mika Juuti.

In 2017, researchers from the University of Chicago described a method for training a machine learning model, a , using a dataset of three million real restaurant ratings on Yelp. After the training, the model generated fake restaurant reviews character by character.

There was a slight hiccup in the method, however; it had a hard time staying on topic. For a review of a Japanese restaurant in Las Vegas, the model could make references to an Italian restaurant in Baltimore. These kinds of errors are, of course, easily spotted by readers.

To help the review generator stay on the mark, Juuti and his team used a technique called neural machine translation to give the model a sense of context. Using a text sequence of "review rating, restaurant name, city, state, and food tags," they started to obtain believable results.

"In the user study we conducted, we showed participants real reviews written by humans and fake machine-generated reviews and asked them to identify the fakes. Up to 60 percent of the fake reviews were mistakenly thought to be real," says Juuti.

Juuti and his colleagues then devised a classifier that would be able to spot the fakes. The classifier turned out to perform well, particularly in cases where human evaluators had the most difficulties in telling whether a is real or not.

The study was conducted in collaboration with Aalto University's Secure Systems research group and researchers from Waseda University in Japan. It was presented at the 2018 European Symposium on Research in Computer Security in September.

Explore further: Study reveals credibility muscle in machine-generated reviews

More information: Stay On-Topic: Generating Context-specific Fake Restaurant Reviews. arxiv.org/abs/1805.02400

Related Stories

Medical practices should address negative online reviews

August 29, 2018

(HealthDay)—Medical practice staff can effectively handle negative online reviews by staying calm and positive, looking for solutions, apologizing, and thanking the reviewers, according to an article published in Physicians ...

Tripadvisor escapes fine in Italy over fake reviews

July 13, 2015

An Italian court overturned Monday a 500,000-euro ($550,000) fine slapped on TripAdvisor for failing to warn users that some opinions posted on the popular hotel and restaurant review website may be fakes.

Recommended for you

Permanent, wireless self-charging system using NIR band

October 8, 2018

As wearable devices are emerging, there are numerous studies on wireless charging systems. Here, a KAIST research team has developed a permanent, wireless self-charging platform for low-power wearable electronics by converting ...

Facebook launches AI video-calling device 'Portal'

October 8, 2018

Facebook on Monday launched a range of AI-powered video-calling devices, a strategic revolution for the social network giant which is aiming for a slice of the smart speaker market that is currently dominated by Amazon and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.