Novel method produces highest-ever signals for human embryonic stem cell detection

September 26, 2018, Singapore University of Technology and Design
Novel method produces highest-ever signals for human embryonic stem cell detection
Top left panel. Image of H9 cells with 2D-MoS2 sheets stained for different materials. Top right panel. Transmission electron microscopy (TEM) image of the 2D-MoS2 sheets embedded in the membrane of the H9 cells. Bottom left panel. Snapshot of the lipid membrane gathering below the MoS2 sheet. Bottom right panel. Illustration of stem cell-sensor technology. Credit: SUTD

A new method developed by researchers at Singapore University of Technology and Design (SUTD) can potentially ensure patient safety for future stem cell-based therapies by enhancing native stem cell bioelectric signals.

Reliable methods to monitor and validate are required to advance and ensure . Electrical-based detection (EBD) methods are non-invasive and can be used to detect stem cell pluripotency in real-time, and avoid the cost and cell-damaging issues caused by traditional detection methods. However, past EBD methods have produced low current signals, preventing commercialisation.

SUTD researchers Ph.D. candidate Sophia Chan and Dr. Desmond Loke, together with colleagues from Nanyang Technological University (NTU) and the Agency for Science, Technology and Research (A*STAR) have developed a method to achieve ultra-high bioelectric signals from human (hESCs).

Recently published in ACS Applied Bio Materials, the research team achieved a 1.828 mA cell signal using direct current-voltage measurements and two-dimensional molybdenum disulphide sheets. This is two-orders of magnitude higher than previous EBD methods.

"Stem cells are promising starting materials for currently untreated and life-threatening diseases. However, they are limited by readily available methods to ensure therapeutic safety. Our method is able to enhance native stem cell signals feasible for commercialisation to ensure therapeutic safety." says Chan.

The researchers also demonstrate that the 2-D-MoS¬2 sheets enhanced bioelectric signals without affecting the native characteristics of the . From molecular dynamics (MD) simulations, the group deduced that the increased current flow was a result of the spontaneous interactions formed between the sheets and the cells.

Explore further: Research identifies properties of stem cells that determine cell fate

More information: Sophia S. Y. Chan et al, Ultra-High Signal Detection of Human Embryonic Stem Cells Driven by Two-Dimensional Materials, ACS Applied Bio Materials (2018). DOI: 10.1021/acsabm.8b00085

Related Stories

Structure of a stem cell niche

March 1, 2018

Stem cells—specialized cells that can self-renew and generate functional cells—maintain adult tissues. They reside in a specialized microenvironment, known as a niche, that regulates their self-renewal and activities. ...

Controls of specialization unraveled

November 4, 2015

Two phases of the cell cycle of human embryonic stem cells have been shown, for the first time, to actively employ pathways that maintain pluripotency—the potential to develop into almost any type of cell in the body.

The protein TAZ sends 'mixed signals' to stem cells

September 6, 2017

Just as beauty exists in the eye of the beholder, a signal depends upon the interpretation of the receiver. According to new USC research published in Stem Cell Reports, a protein called TAZ can convey very different signals—depending ...

Recommended for you

Researchers find positive visual contagion in Barbary macaques

December 12, 2018

A pair of researchers at the University of Roehampton has found that captive Barbary macaques are capable of engaging in positive visual contagion—a behavior normally only seen in humans. In their paper published in Proceedings ...

Hot possums risk losing their homes

December 12, 2018

As our world is warming under climate change, heat waves are becoming more frequent and intense, yet the vulnerability of our wildlife to such events is poorly understood. New research from Australia's Wet Tropics indicates ...

The real history of quantum biology

December 12, 2018

Quantum biology, a young and increasingly popular science genre, isn't as new as many believe, with a complicated and somewhat dark history, explain the founders of the world's first quantum biology doctoral training centre.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.