Detecting hydrogen using the Extraordinary Hall Effect in cobalt-palladium thin films

September 12, 2018, American Institute of Physics

Researchers looking to hydrogen as a next-generation clean energy source are developing hydrogen-sensing technologies capable of detecting leaks in hydrogen-powered vehicles and fueling stations before the gas turns into an explosion. The most common type of hydrogen sensors is composed of palladium-based thin films because palladium (Pd), a silvery-white metal resembling platinum, readily absorbs hydrogen gas. However, Pd also readily absorbs other gases, decreasing the overall efficiency of these sensors.

Alexander Gerber's research team at Tel Aviv University recently conducted a systematic study of detection using the Extraordinary Hall Effect (EHE) to measure the hydrogen magnetization response in cobalt-palladium (CoPd) thin films. The team reports the findings in the Journal of Applied Physics.

"We found that detection of hydrogen by EHE really works with very high sensitivity," said Alexander Gerber, an author on the paper. "A goal would be to develop a compact EHE device compatible with a standard four-probe resistance measuring method to enhance gas detection through a magnetic type of sensor using the spintronics effect."

The burgeoning field of spintronics exploits an electron's spin and its resulting magnetic properties. In essence, EHE is a spin-dependent phenomenon that generates voltage proportional to magnetization across a current-carrying magnetic film.

Otherwise known as the anomalous Hall effect, EHE occurs in ferromagnetic materials and can be much larger than the ordinary Hall effect. Although palladium has high hydrogen absorption capacity, it's not ferromagnetic by itself. So, the researchers added cobalt, a ferromagnetic material whose are affected by the hydrogen absorption in CoPd alloys to induce EHE.

The researchers prepared four sets of samples with thicknesses of 7, 14, 70 and 100 nanometers with varying cobalt concentrations and tested them in an atmosphere with different levels of hydrogen up to 4 percent. They found that the thinnest films demonstrated the largest absolute response to hydrogen: The signal changes by more than 500 percent per 1 percent of hydrogen.

"In practical terms, we identified the sensitive range of compositions, how the response to hydrogen depends on composition, and what the options are to operate the sensor," Gerber said.

Gerber's research team is now in the process of recording response times and exploring the ability to release hydrogen after exposure so can be reused. The researchers also plan to explore ways to improve selectivity of hydrogen and adapt their technique for selective detection of other gases.

Explore further: A hydrogen sensor that works at room temperature

More information: S. S. Das et al, Detection of hydrogen by the extraordinary Hall effect in CoPd alloys, Journal of Applied Physics (2018). DOI: 10.1063/1.5049647

Related Stories

A hydrogen sensor that works at room temperature

July 6, 2018

Researchers at TU Delft have developed a highly sensitive and versatile hydrogen sensor that works at room temperature. The sensor is made of a thin layer of a material called tungsten trioxide.

Chemists improve hydrogen sensors

January 18, 2018

A group of scientists from the Siberian Federal University (SFU, Krasnoyarsk, Russia) and the Nikolaev Institute of Inorganic Chemistry (NIIC, Novosibirsk, Russia) have combined the useful properties of metal phthalocyanines ...

Ultra-fast and ultra-sensitive hydrogen sensor

September 29, 2017

A KAIST team made an ultra-fast hydrogen sensor that can detect hydrogen gas levels under 1% in less than seven seconds. The sensor also can detect hundreds of parts per million levels of hydrogen gas within 60 seconds at ...

Scientists introduce new material to store hydrogen

September 6, 2017

Scientists of Siberian Federal University and the Institute of Physics of the SB RAS produced a new material for hydrogen storage. The material is based on magnesium hydride, and can store hydrogen mass of about 7 percent ...

Researchers develop extremely sensitive hydrogen sensor

June 6, 2017

Hydrogen is a highly promising energy carrier. But it can also be dangerous, as it is combustible and difficult to detect. Using hydrogen safely requires sensors that can detect even the smallest of leaks. Researchers from ...

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.