Similarities between the two gap phases of the cell cycle indicate a default biochemical program in living cells

August 16, 2018, Agency for Science, Technology and Research (A*STAR), Singapore
Similarities between the two gap phases of the cell cycle indicate a default biochemical program in living cells
A protein interaction network in a biological system, where gold stands for changes only in cellular thermal shift assay stability (NC), cyan for changes only in expression level (CN) and red for changes in both (CC). Credit: Elsevier

The two 'gap' phases of the cell cycle were long thought to be under different regulatory control circuits, but a new study from A*STAR overturns this idea.

Pär Nordlund from the A*STAR Institute of Molecular and Cell Biology and colleagues found that the protein complexes formed during the gap 1 (G1) and gap 2 (G2) phases of the cell cycle are remarkably similar—suggesting that the cell is hardwired for a default biochemical mode of operation when it's not actively replicating genetic material or dividing itself.

"This observation of similar biochemical programs in G1 and G2 is new, exciting, and unexpected," Nordlund says.

Cells in our bodies multiply through a four-stage process: cells first increase their mass and prepare for DNA replication during G1; they then copy DNA during the synthesis stage; next, they check the fidelity of duplicated DNA and assemble the materials needed for division during G2; and finally they align replicated chromosomes and divide during mitosis.

Transition from each stage is a tightly regulated event, requiring the assembly and disassembly of various protein complexes to execute many different functions—including to provide molecular checkpoints on cell-cycle progression.

Researchers had previously shown that the expression levels of some of these proteins, and their corresponding RNA molecules, rise and fall at certain points of the cell cycle. However, those analyses overlooked of the dynamic interactions between proteins and their binding partners that underpin how the cell moves through the phases of its cycle.

Nordlund and his colleagues profiled the dynamics of interaction states between all the proteins found in human blood cells during the transition of cell cycle's four stages. They used a technique previously developed by Nordlund's team—the Cellular Thermal Shift Assay (CETSA), which enabled them to discern which proteins stood alone and which were linked in protein complexes.

They identified more than 750 proteins that formed complexes or broke them apart at some point in the cell cycle. However, most of these altered interaction states occurred during the synthesis and mitosis stages of the —not during the gap phases.

Differences between G1 and G2 were comparatively minor, despite the unique roles played by gap stages in readying the cell for the next phase of the cycle. "This implies a well-working constant program that the cell reverts to," says Nordlund. "It extends our basic understanding of the biochemical programs in one of the fundamental processes in living cells."

Explore further: Monitoring the dynamics of thousands of protein complexes simultaneously within intact cells

More information: Lingyun Dai et al. Modulation of Protein-Interaction States through the Cell Cycle, Cell (2018). DOI: 10.1016/j.cell.2018.03.065

Related Stories

Growing and surviving: How proteins regulate the cell cycle

March 26, 2018

Cell division is the basis of all life. Even the smallest errors in this complex process can lead to grave diseases like cancer. Certain proteins have to be switched on or off at specific times for proper cell division. Biophysicists ...

Recommended for you

60 percent of coffee varieties face 'extinction risk'

January 16, 2019

Three in five species of wild coffee are at risk of extinction as a deadly mix of climate change, disease and deforestation puts the future of the world's favourite beverage in jeopardy, new research warned Wednesday.

How stem cells self-organize in the developing embryo

January 16, 2019

Embryonic development is a process of profound physical transformation, one that has challenged researchers for centuries. How do genes and molecules control forces and tissue stiffness to orchestrate the emergence of form ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.