Gene editing technique allows silkworms to produce spider silk

August 7, 2018 by Bob Yirka, Phys.org report
An analysis of transformed cocoons. Morphology of the WT-1, FibH+/-, FibH-/-, WT-2, MaSp1+/-, and MaSp1+/+ cocoons. Scale bar represents 1 cm. Credit: Jun Xu

A team of researchers affiliated with several institutions in China has succeeded in using a gene editing technique to get silkworms to produce spider silk. In their paper published in Proceedings of the National Academy of Sciences, the group describes the technique they used and the quality of the silk produced.

In recent years, scientists have discovered that the unique attributes of spiker make it useful in a number of applications. One group found, for example, that it could be used to create micro-capsules for delivering cancer drugs. Another found that it could be used to repair damaged nerves, and yet another found it could make bulletproof vests stronger. Thus, biological researchers have sought ways to produce spider silk commercially, but have come up short. Efforts to farm them like silkworms have failed due to the erratic nature and aggressive behavior of spiders. And efforts to genetically alter other critters have come up short, as well. In this new effort, the researchers tackled the latter approach and report that they have found a way to succeed where others have failed.

Rather than using the more familiar CRISPR , the researchers chose instead to use an editing technique called TALEN—it is a method that uses so-called "molecular scissors" to operate on DNA. Using the technique, the team replaced one part of a silkworm genome with a snippet from a golden orb-web spider to produce a making silkworm.

The researchers report that their efforts resulted in silkworms able to produce silk that was a mixture of that normally produced by the and the spider. Testing showed that the silk was 35.2 percent , which was a big improvement over the work of other teams, which were only able to achieve approximately 5 percent. The newly improved silk was also ready for use as spun by the silkworms, as opposed to results obtained by other teams. The researchers note that the process also allows for creating custom silks depending on need. They suggest their technique lends itself very well to mass production, making it a viable option for future applications.

Explore further: Altering silkworm genes to cause addition of useful protein into silk production

More information: Jun Xu et al. Mass spider silk production through targeted gene replacement inBombyx mori, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1806805115

Abstract
Spider silk is one of the best natural fibers and has superior mechanical properties. However, the large-scale harvesting of spider silk by rearing spiders is not feasible, due to their territorial and cannibalistic behaviors. The silkworm, Bombyx mori, has been the most well known silk producer for thousands of years and has been considered an ideal bioreactor for producing exogenous proteins, including spider silk. Previous attempts using transposon-mediated transgenic silkworms to produce spider silk could not achieve efficient yields, due to variable promoter activities and endogenous silk fibroin protein expression. Here, we report a massive spider silk production system in B. mori by using transcription activator-like effector nuclease-mediated homology-directed repair to replace the silkworm fibroin heavy chain gene (FibH) with the major ampullate spidroin-1 gene (MaSp1) in the spider Nephila clavipes. We successfully replaced the ∼16-kb endogenous FibH gene with a 1.6-kb MaSp1 gene fused with a 1.1-kb partial FibH sequence and achieved up to 35.2% chimeric MaSp1 protein amounts in transformed cocoon shells. The presence of the MaSp1 peptide significantly changed the mechanical characteristics of the silk fiber, especially the extensibility. Our study provides a native promoter-driven, highly efficient system for expressing the heterologous spider silk gene instead of the transposon-based, random insertion of the spider gene into the silkworm genome. Targeted MaSp1 integration into silkworm silk glands provides a paradigm for the large-scale production of spider silk protein with genetically modified silkworms, and this approach will shed light on developing new biomaterials.

Related Stories

Silkworms spinning spider webs

January 3, 2012

(PhysOrg.com) -- A spiders silk is strong and more elastic and has a large range of possible medical applications. However, spiders have a history of being territorial and prone to cannibalism, so the idea of having a large ...

Synthetic spider silk strong enough for a superhero

March 5, 2014

Spider silk of fantastical, superhero strength is finally speeding toward commercial reality—at least a synthetic version of it is. The material, which is five times stronger than steel, could be used in products from bulletproof ...

Recommended for you

Gut bacteria provide key to making universal blood

August 21, 2018

In January, raging storms caused medical emergencies along the U.S. East Coast, prompting the Red Cross to issue an urgent call for blood donations. The nation's blood supply was especially in need of O-type blood that can ...

Progress toward plugging an antibiotic pump

August 20, 2018

Each year in the U.S., at least 23,000 people die from infections caused by antibiotic resistant bacteria, according to the Centers for Disease Control and Prevention.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

rderkis
5 / 5 (2) Aug 07, 2018
They have been trying to do this for a long time. Glad to see they are making real progress.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.