Altering silkworm genes to cause addition of useful protein into silk production

April 5, 2018 by Bob Yirka, Phys.org report
Altering silkworm genes to cause addition of useful protein into silk production
Credit: ACS

A team of researchers with the RIKEN Center for Life Science Technologies and the National Agriculture and Food Research Organization, both in Japan, has found a way to alter silkworm genes to create silk with useful proteins. In their paper published in ACS Synthetic Biology, the group describes their technique and suggest possible uses for it.

For many years scientists have strived to improve on the already impressive attributes of —some would like to make it stronger, others to produce silk naturally in different colors, while others yet would like to include features such as antibiotic properties. Such efforts have not always been as fruitful as desired, however; thus, research continues. In this new effort, the researchers sought to change the makeup of silk by causing the silkworm to produce and use unnatural proteins.

The researchers sought to induce silkworms to produce an amino acid called 4-azido-L-phenylalanine, which the worms would add to the silk they made. The researchers used tRNA synthetase to get their silk-producing organs to create azidophenylalanine and then to accept it as an added ingredient in silk production. They then used a bacterial screening system to weed out the cells that were not receptive to adding the protein as silk was spun. This was followed by the creation of four altered strains and adding the genes responsible for causing the creation of azidophenylalanine in only the parts of the worm involved in creating the materials for use in spinning silk—allowing it to make its way to other body parts could have led to undesired side-effects.

At this point, the team was ready to test their work by allowing the genetically modified worms to spin some silk. Testing of the silk showed that for two of the strains, more than 6 percent of the natural enzyme had been replaced by azidophenylalanine—proof that their technique had worked. The team then demonstrated that adding a such as azidophenylalanine could provide a positive function by conjugating the silk produced by the modified silkworms to fluorescent molecules through the use of click chemistry, which caused the cocoons to glow—one bright red, the other green.

Explore further: Silkworms fed carbon nanotubes or graphene produce stronger silk

More information: Hidetoshi Teramoto et al. Genetic Code Expansion of the Silkworm Bombyx mori to Functionalize Silk Fiber, ACS Synthetic Biology (2018). DOI: 10.1021/acssynbio.7b00437

Abstract
The genetic code in bacteria and animal cells has been expanded to incorporate novel amino acids into proteins. Recent efforts have enabled genetic code expansion in nematodes, flies, and mice, whereas such engineering is rare with industrially useful animals. In the present study, we engineered the silkworm Bombyx mori to synthesize silk fiber functionalized with azidophenylalanine. For this purpose, we developed a bacterial system to screen for B. mori phenylalanyl-tRNA synthetases with altered amino-acid specificity. We created four transgenic B. mori lines expressing the selected synthetase variants in silk glands, and found that two of them supported the efficient in vivo incorporation of azidophenylalanine into silk fiber. The obtained silk was bio-orthogonally reactive with fluorescent molecules. The results showed that genetic code expansion in an industrial animal can be facilitated by prior bacterial selection, to accelerate the development of silk fiber with novel properties.

Related Stories

Silkworms spinning spider webs

January 3, 2012

(PhysOrg.com) -- A spiders silk is strong and more elastic and has a large range of possible medical applications. However, spiders have a history of being territorial and prone to cannibalism, so the idea of having a large ...

GM silkworms bred to spin fluorescent

June 21, 2013

(Phys.org) —Scientists in Japan have genetically engineered silkworms to create red, green or orange silks that glow under fluorescent lights.

Recommended for you

New theory shows how strain makes for better catalysts

April 20, 2018

Brown University researchers have developed a new theory to explain why stretching or compressing metal catalysts can make them perform better. The theory, described in the journal Nature Catalysis, could open new design ...

Machine-learning software predicts behavior of bacteria

April 19, 2018

In a first for machine-learning algorithms, a new piece of software developed at Caltech can predict behavior of bacteria by reading the content of a gene. The breakthrough could have significant implications for our understanding ...

Spider silk key to new bone-fixing composite

April 19, 2018

UConn researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

GLUT5 fluorescent probe fingerprints cancer cells

April 19, 2018

Determining the presence of cancer, as well as its type and malignancy, is a stressful process for patients that can take up to two weeks to get a diagnosis. With a new bit of technology—a sugar-transporting biosensor—researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.