Researchers put a new spin on cooling electronic hotspots

August 1, 2018 by David Staudacher, University of Illinois at Chicago, College of Engineering
Assistant Professor Junxia “Lucy” Shi and her team of researchers in the Advanced Semiconductor Materials and Devices Laboratory at UIC are focusing on using a novel method for cooling hotspots in electronics and capturing the wasted heat to use to power the devices. Credit: David Staudacher

The longevity of electronic devices is tested in many ways as they endure the rigors of daily usage. Even when they are treated with the utmost care, they still have a major challenge to overcome – the removal of heat.

To alleviate this problem, ECE Assistant Professor Junxia "Lucy" Shi and her team of researchers in the Advanced Semiconductor Materials and Devices Laboratory at UIC are focusing on using a novel method for cooling hotspots in electronics and capturing the wasted heat to use to power the devices. The new technique additionally has the potential to expand the longevity of electronic components.

The results of their research were recently published in the prestigious journals Scientific Reports and Physical Review Materials.

Electronic devices are getting miniaturized, and produce a lot of heat when they carry currents. If the heat is not extracted out of the , it will reduce the operating lifetime. Present cooling techniques are only efficient when the heat is close to the surface. Within a chip there are places called "hotspots," which are areas of localized high temperatures.

"These are to be avoided, otherwise they create failures." said Shi. "Our targeted applications are heat sensors, energy converters, etc. We want to be able to gauge that heat generated in devices if desired, or better yet, extract that heat and convert to electricity."

"What we are trying to do here is use the intrinsic property of material in tandem with the modern techniques of thermal solid state cooling to drive more heat out of the device," said Postdoctoral Researcher Parijat Sengupta, who is working under the direction of Shi. "We are looking at the internal arrangement of electrons, how they carry out the motion within the crystal, and how the motion gives rise to a certain kind of , which is not applied from the outside. It is like having an and it creates an additional avenue to drive more heat out of the device."  

The researchers theoretically quantified how much heat can be driven, and they discovered that a lot of heat is produced, and the energy can be harvested.

"You drive current through a device – so you are applying voltage – and in turn you are receiving heat, which usually goes to waste. We are trying to use that heat in multiple ways," said Shi.

"The heat can be utilized by driving a thermal power generator, where the heat produces electricity again," said Sengupta. "Also, we can use heat to drive 'spin currents,' which is the internal attribute of the electron."

"Driven by the motivation to do energy harvesting, we chose a material where extra impetus can be had from the material's internal arrangement of atoms and electrons and see what are the optimal experimental setups we can look for that maximize the heat flow," added Sengupta.

The researchers are using thermal power generators from an application standpoint because of the heat that it can draw out and drive another generator. There are two effects called the Seebeck effect and the Peltier effect, which are at play in the research.

"If I drive through this material that will create a temperature gradient and that gives rise to voltage that you can use for something else. That's the primary goal in mind," said Sengupta. "The second is the spin current. We introduced the spin of electrons into our work. That is what makes this research interesting."
Learn more about professor Shi and her research at Advanced Semiconductor Materials and Devices Laboratory. 

Explore further: Very thin film could help manage heat flow in future devices

More information: Parijat Sengupta et al. Rashba-driven anomalous Nernst conductivity of high spin-orbit-coupled lead chalcogenide films, Physical Review Materials (2018). DOI: 10.1103/PhysRevMaterials.2.064606

Parijat Sengupta et al. Spin-dependent magneto-thermopower of narrow-gap lead chalcogenide quantum wells, Scientific Reports (2018). DOI: 10.1038/s41598-018-23511-2

Related Stories

Thermally driven spin current in DNA

March 15, 2018

An emerging field that has generated a wide range of interest, spin caloritronics, is an offshoot of spintronics that explores how heat currents transport electron spin. Spin caloritronics researchers are particularly interested ...

Electron sandwich doubles thermoelectric performance

June 20, 2018

Researchers more than doubled the ability of a material to convert heat into electricity, which could help reduce the amount of wasted heat, and thus wasted fossil fuel, in daily activities and industries.

Turning background room temperature heat into energy

February 15, 2018

Every time we convert energy from one form to another, part of that energy is lost in the form of heat. Trying to efficiently get that energy back is very difficult once it is lost to the environment. Thermoelectric devices ...

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.