Surprising similarity between stripy black holes and high-temperature superconductors

July 23, 2018 by Erik Arends, Leiden Institute of Physics
Credit: Leiden Institute of Physics

Scientists don't understand how some materials become superconducting at relatively high temperatures. Leiden physicists have now found a surprising connection with auxiliary black holes. It enables researchers to apply knowledge of black holes to the mystery of high-temperature superconductivity. The new study is published in Nature Physics.

Superconductivity, discovered in Leiden in 1911, is exploited for many modern applications, such as MRI scanners and particle accelerators. These are based on the phenomenon whereby electric currents flow without resistance at temperatures close to absolute zero. Unfortunately, continuous cooling requires lots of energy, so physicists all over the world are looking for a way to make superconducting materials that operate at higher temperatures.

All relatively high-temperature superconductors now known are based on so-called Mott insulators. These form when electrons are stuck in their crystal lattice nodes, exactly one per node. They turn into superconductors after extra electrons are injected. Researchers don't understand why this happens on a fundamental level. Knowing this could enable even higher-temperature superconductors that are cheaper to keep sufficiently cool.

As the superconductor is formed, the imparity between the number of electrons and the number of available nodes within the crystal lattice causes a stripy pattern, much like the moving Moiré patterns seen on TV when an old-fashioned computer screen is filmed. But why? This is a key question in understanding Mott insulators.

Physicists are looking for the answer in an unexpected direction—they hypothesize that the dodgy electrons in high-temperature behave in some ways similarly to auxiliary . Leiden physicists Alexander Krikun, Koenraad Schalm and Jan Zaanen together with Tomas Andrade from the University of Barcelona have now found the same stripy pattern in a similar discrepancy between auxiliary 'wavy' black holes and a . This confirms the hypothesis and means that knowledge about black holes can apply to better understanding .

Explore further: The relationship between charge density waves and superconductivity? It's complicated

More information: Tomas Andrade, Alexander Krikun , Koenraad Schalm & Jan Zaanen, 'Doping the holographic Mott insulator', Nature Physics. arxiv.org/abs/1710.05791

Related Stories

Melting of frozen electrons visualized

September 20, 2016

For the first time, physicists have visualized the 'melting' of electrons inside a special class of insulators that allows electrons to move freely; the process turns the insulator into a metal and possibly later into a superconductor. ...

Recommended for you

Scientists produce 3-D chemical maps of single bacteria

November 16, 2018

Scientists at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory—have used ultrabright x-rays to image single bacteria ...

Take a weight off: 'Grand K' kilo being retired

November 16, 2018

In a historic vote, nations on Friday unanimously approved a ground-breaking overhaul to the international system of measurements that underpins global trade and other vital human endeavors, uniting together behind new scientific ...

Bursting bubbles launch bacteria from water to air

November 15, 2018

Wherever there's water, there's bound to be bubbles floating at the surface. From standing puddles, lakes, and streams, to swimming pools, hot tubs, public fountains, and toilets, bubbles are ubiquitous, indoors and out.

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.