Designer molecule kills malarial parasites

July 24, 2018, Australian National University
Credit: The US Centers for Disease Control and Prevention, Flickr

A research team from ANU and The University of Queensland has designed and made a molecule derived from a human protein that kills the parasite which causes malaria.

Treatments for malaria, a disease that kills a person every 90 seconds, are becoming less effective because of drug resistance and there is a risk to the future control of the disease.

Lead researcher Associate Professor Brendan McMorran from ANU said the team was a step closer to developing a new and effective treatment for malaria.

"We have designed and created a small fragment of a human protein called Platelet factor 4, known as PF4, that can kill the microbial parasite that causes malaria, Plasmodium," said Dr McMorran from the John Curtin School of Medical Research.

"PF4, which my research group at ANU identified in previous work, is the only known to kill malarial parasites."

The protein is relatively large and not suited to use as a treatment, so the team copied parts of the that are critical for terminating the into a smaller molecule, otherwise known as a peptide.

"We have shown that this peptide kills the parasite in a way that is completely different to how current antimalarial drugs work," Dr McMorran said.

"This is important because finding new ways to kill the parasite will help us overcome the drug-resistance problems."

The study involved expertise from several disciplines from the John Curtin School of Medical Research, the ANU Research School of Biology and The Institute for Molecular Bioscience at The University of Queensland.

The researchers tested the peptide's effectiveness at killing the malarial parasite cultured in human red cells under laboratory conditions.

The team will develop more potent versions of the peptide that can be used as new treatments for .

"To do this, we plan to modify the peptide to include new functions that target other vulnerable parts of the parasite, and make the peptide more suited to being administered to people," Dr McMorran said.

The research is published in Cell Chemical Biology.

Explore further: Deadliest human malaria parasite reveals the genomic chinks in its armor

More information: Nicole Lawrence et al. Defense Peptides Engineered from Human Platelet Factor 4 Kill Plasmodium by Selective Membrane Disruption, Cell Chemical Biology (2018). DOI: 10.1016/j.chembiol.2018.06.009

Related Stories

Malarial parasites dodge the kill

May 4, 2015

Scientists have uncovered a potential mode of parasite drug resistance in malaria infection, according to a report published in The Journal of Experimental Medicine.

Scientists exploit malaria's Achilles' heel

July 25, 2016

Malaria researchers at The Australian National University (ANU) have found one of the malaria parasite's best weapons against drug treatments turns out to be an Achilles' heel, which could be exploited to cure the deadly ...

Malaria vaccine target's invasion partner uncovered

February 10, 2017

A team at the Wellcome Trust Sanger Institute has discovered how a promising malarial vaccine target - the protein RH5 - helps parasites to invade human red blood cells. Published today in Nature Communications, the study ...

Recommended for you

Scientists solve mystery shrouding oldest animal fossils

March 25, 2019

Scientists from The Australian National University (ANU) have discovered that 558 million-year-old Dickinsonia fossils do not reveal all of the features of the earliest known animals, which potentially had mouths and guts.

Earth's deep mantle flows dynamically

March 25, 2019

As ancient ocean floors plunge over 1,000 km into the Earth's deep interior, they cause hot rock in the lower mantle to flow much more dynamically than previously thought, finds a new UCL-led study.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.