Trapping light that doesn't bounce off track for faster electronics

July 30, 2018 by Kayla Wiles, Purdue University
An anisotropic metamaterial waveguide cladding keeps light travel on track throughout a computer chip, preventing leaked and jumbled bits of information. Credit: Purdue University image/Saman Jahani

Replacing traditional computer chip components with light-based counterparts will eventually make electronic devices faster due to the wide bandwidth of light.

A new protective metamaterial "cladding" prevents light from leaking out of the very curvy pathways it would travel in a computer .

Because processing with light can be more efficient than with electrons used in current devices, there is good reason to confine light onto a chip. But light and the bits of information it carries tend to leak and scatter out of the tiny components that must fit on a chip.

A Purdue University-led effort has built a novel cladding along the highways for light travel, called waveguides, to prevent information leaks—particularly around sharp bends where light bounces off track and scatters. Information then gets lost or jumbled rather than communicated throughout a device. Preventing this could facilitate the integration of photonic with electric circuitry, increasing communication speed and reducing power consumption.

"We want the bits of information that we are sending in the waveguide to travel along tight bends and simultaneously not be lost as heat. This is a challenge," said Zubin Jacob, Purdue assistant professor of electrical and computer engineering.

What makes the waveguide cladding so unique is anisotropy, meaning that the cladding design enables light to travel at different velocities in different directions. By controlling the anisotropy of the cladding, the researchers prevented light from leaking off track into other waveguides where "crosstalk," or mixing, of information would occur. Instead, bits of information carried by light bounce off by "total internal reflection" and stay strongly confined within a waveguide.

"The we made is an extreme skin-depth structure, which means that any leakage that does happen will be really small," said Saman Jahani, Purdue graduate research assistant in electrical and computer engineering. "This approach can pave the way for dense photonic integration on a chip without worrying about leakage."

Explore further: A silicon-nanoparticlephotonic waveguide

More information: Saman Jahani et al, Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration, Nature Communications (2018). DOI: 10.1038/s41467-018-04276-8

Related Stories

A silicon-nanoparticlephotonic waveguide

July 16, 2018

A new way to efficiently guide light at tiny scales has been demonstrated by an all-A*STAR team. Their method, which involves lining up silicon nanoparticles, is promising for applications such as light-based integrated circuits, ...

Capturing light in a waveguide array

June 4, 2018

Cheaper and more efficient photonic devices, such as lasers, optical fibers, and other light sources may be possible with confined light that is unaffected by imperfections in the material that confines it, according to new ...

Photonic waveguides suppress "crosstalk among neighbors"

July 23, 2015

Silicon photonics holds great promise for low-cost, large-scale integration of photonic components.  The demand for increasing density of these components has led to a multitude of technological challenges in their manufacture ...

Laser cavities take on new shapes and functionalities

October 12, 2017

Researchers have demonstrated the first laser cavity that can confine and propagate light in any shape imaginable, even pathways with sharp bends and angles. The new cavity, called a topological cavity, could enable laser ...

Recommended for you

New world record magnetic field

September 17, 2018

A group of scientists at the University of Tokyo has recorded the largest magnetic field ever generated indoors—a whopping 1,200 tesla, as measured in the standard units of magnetic field strength.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.