Laser cavities take on new shapes and functionalities

October 12, 2017
Laser cavities take on new shapes and functionalities

Researchers have demonstrated the first laser cavity that can confine and propagate light in any shape imaginable, even pathways with sharp bends and angles. The new cavity, called a topological cavity, could enable laser components to be packed more densely on a chip, leading to higher speed optical communication technologies that can be fabricated in an efficient and scalable manner using photonic integration techniques.

This paper will be published online by the journal Science on Thursday, 12 October, 2017.

"Our goal is to overcome the fundamental limitations of optical devices and uncover new physical principles that can enable what was previously thought impossible," said Boubacar Kanté, a professor of electrical and computer engineering at UC San Diego and the study's senior author.

In most conventional lasers, the needs to have a regular curved shape, typically a ring, for waves to propagate and stay in the cavity. If the cavity has a sharp turn, some of that light gets scattered and lost. This is why, for example, optical fibers can't have any kinks or bends.

"When you change the shape of the cavity, you change the way light is confined in that cavity," said Babak Bahari, an electrical engineering Ph.D. student at UC San Diego and the first author of the paper.

Not being able to change the cavity shape also limits how many components can be integrated into a photonic chip. "If we can deform the shape of the cavity, we can easily fit it in any area on a chip without disrupting or moving other components. This would give us more freedom in designing chip components and making denser, more powerful devices," Kanté said.

The video will load shortly.
Researchers have demonstrated the first laser cavity that can confine and propagate light in any shape imaginable, even pathways with sharp bends and angles. The new cavity, called a topological cavity, could enable laser components to be packed more densely on a chip, leading to higher speed optical communication technologies that can be fabricated in an efficient and scalable manner using photonic integration techniques. Credit: UC San Diego Jacobs School of Engineering

Now, Kanté, Bahari and colleagues have introduced a way to make laser cavities of arbitrary shapes without changing their properties.

They created a structure consisting of two photonic crystals, one surrounding the perimeter of the other. The crystal on the inside is grown from the same materials as the crystal surrounding it, but they are what's known as topologically different—they can be described as having different numbers of holes, like a bagel (one hole) versus a pretzel (three holes). The crystals also exhibit a property in which they can both conduct the same wavelength of light on the outside while acting as insulators on the inside. By putting these crystals together, researchers created a cavity in which can propagate at the interface between the crystals.

The researchers call this a topological cavity. It is not a space, but the border where two topologically different materials meet, Kanté pointed out. This cavity can be any shape—triangle, square, a loop with jagged edges—and light can circulate within that shape without getting scattered.

To demonstrate the lasing capability of their device, researchers first coupled a waveguide to the cavity. Then they energized the crystals with light from a high power laser and applied a magnetic field. Using an infrared camera, they observed their device emitting a lower frequency at 1.55 micrometers, a common wavelength for telecommunications.

Another noteworthy feature is that this device has a non-reciprocal lasing mode, meaning the laser beam can only travel one way. This isn't the case with most existing lasers, which need a device called an isolator to be placed in front of the source and prevent the laser beam from coming back in and potentially destroying the . Isolators are usually large devices and the new work may thus eliminate the need for them in the future, Kanté said.

"This new feature enables us to make a which is self-protected," Bahari said.

Moving forward, the team hopes to create an electrically powered device, which would make it more practical. Kanté is also planning to further explore the fundamental physics of topological cavities. He is particularly interested in investigating how densely such cavities can be packed on a chip. These studies could be important for quantum information processing and could overcome fundamental efficiency limits of current systems, he said.

Explore further: Clamping down on causality by probing laser cavities

More information: "Non-reciprocal lasing in topological cavities of arbitrary geometries" Science (2017). science.sciencemag.org/lookup/ … 1126/science.aao4551

Related Stories

Clamping down on causality by probing laser cavities

August 29, 2017

Since the realization of the first laser cavity countless questions have been asked for which laser light has provided the answer. Numerous questions have also been posed in an effort to improve on our abilities to produce ...

New quantum memory device small enough to fit on a chip

September 1, 2017

(Phys.org)—A team of researchers from the U.S. and Italy has built a quantum memory device that is approximately 1000 times smaller than similar devices—small enough to install on a chip. In their paper published in the ...

Recommended for you

Solution to mysterious behavior of supercooled water

October 23, 2017

When Einstein was working toward his PhD, he was among the first to explain how particles exhibit random motions in fluids. Diffusion is an important physical process and the Stokes–Einstein relationship describes how particles ...

Fast 3-D microscope with nano precision

October 23, 2017

A fast 3-D optical microscope which can acquire a full field image of the surfaces of objects at nanoscale resolution was developed recently in the lab of Prof. Ibrahim Abdulhalim (pictured right) in the Unit of Electro-Optical ...

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.