Team uses severe deformation method on bulk magnetic alloys for high performance

June 13, 2018 by Dharmesh Patel, Texas A&M University
Credit: Texas A&M University

In a collaborative study involving Equal Channel Angular Extrusion (ECAE), a unique severe plastic deformation (SPD) process, researchers Dr. Ibrahim Karaman from Texas A&M University and Drs. Don Susan and Andrew Kustas of Sandia National Laboratories were able to improve the mechanical properties of magnetic alloys without changing their magnetic properties through microstructural refinement. This process has proven to be troublesome in the past.

Production of high-performance magnetic and other intermetallics could prove particularly useful in aerospace and space exploration where materials must endure harsh environments including temperature extremes, shock, and vibration.

ECAE forces a bar of metallic or polymeric material at a 90-degree angle through a die channel. This process induces SPD without any changes in the cross-sectional area of the sample.

Originally the researchers at Sandia National Laboratories and Texas A&M worked together on a different topic involving shape memory alloys. They quickly realized the potential in combining the strengths of their respective facilities on an entirely new study and subsequently applied the experiences to magnetic alloys.

Sandia saw the need to manufacture magnetic alloys in bulk demonstrating superior mechanical properties. Because ECAE allows the microstructure of materials to be drastically altered without affecting its cross-sectional area, larger samples with dimensions greater than one inch could be produced while improving mechanical properties simultaneously.

"I was initially skeptical about increasing the strength of the particular materials while keeping the magnetic properties unaffected," said Dr. Ibrahim Karaman, department head of the Department of Materials Science and Engineering at Texas A&M. "However, through collaboration with Sandia scientists, we were able to achieve what we dreamed of and that lead to a patent application for ECAE-processed soft magnetic alloys."

Researchers at Texas A&M carried out the ECAE processing and some microstructural characterization and mechanical testing. Sandia took these findings and administered further microstructural and mechanical characterization and testing.

"ECAE process has been a key element of Texas A&M material processing research in the last two decades and we applied this technique to many unconventional materials with success," said Karaman.

"ECAE has traditionally been applied to common materials such as aluminum, copper, or steel," said Dr. Don Susan, principal member of technical staff at Sandia, who added that these were malleable and readily manipulated taking the shape of the die with ease. "This work was groundbreaking because it attempted ECAE on a brittle intermetallic alloy."

Conventionally a cold temperature process, the team had to experiment with high temperature ECAE that had not been extensively explored in magnetic alloys.

"Sandia scientists wanted to apply ECAE to magnetic alloys with low strength and extreme brittleness such as Fe-Co-V," said Karaman.

As a result, their work was able to show ECAE can be done in extreme processing conditions producing high-performance alloys that can withstand demanding mechanical environments.

"We think there may be opportunities to apply ECAE to other intermetallic alloys, such as Fe-Si or Ni-Ti, to refine their microstructures and improve properties as well," said Susan. "These experiments have opened the door for further studies in the field."

"Now Sandia is pursuing a scale-up of the process with a spin-off company from Texas A&M to check the industrial scale magnetic and of these magnetic alloys," said Karaman. "It's exciting for us to see the fruit of our joint collaboration."

The findings are electronically published on Cambridge Core in Journal of Materials Research by the Cambridge University Press.

Explore further: Team takes the guesswork out of discovering new high-entropy alloys

More information: Andrew B. Kustas et al, Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part II: Texture analysis and magnetic properties, Journal of Materials Research (2018). DOI: 10.1557/jmr.2018.150

Related Stories

Interdisciplinary team works to 4-D print metals and alloys

April 26, 2017

A team of researchers from the Department of Materials Science and Engineering and the Department of Industrial and Systems Engineering at Texas A&M University is collaborating to 4-D print nickel-titanium shape memory alloys.

Shape-shifting alloys hold promise

August 27, 2013

Imagine untwisting a finger-size spring, then holding the flame from a lighter underneath the unraveled section. Like magic, it twirls itself into a spring again because the metal alloy remembered its original shape.

Alloys from the laser printer

November 15, 2017

In the future, new designer alloys for aerospace applications can be manufactured using the 3-D laser melting process (Additive Manufacturing). Pioneering work in this field was provided by Empa researcher Christoph Kenel, ...

Recommended for you

Physicists 'flash-freeze' crystal of 150 ions

February 20, 2019

Physicists at the National Institute of Standards and Technology (NIST) have "flash-frozen" a flat crystal of 150 beryllium ions (electrically charged atoms), opening new possibilities for simulating magnetism at the quantum ...

The holy grail of nanowire production

February 20, 2019

Nanowires have the potential to revolutionize the technology around us. Measuring just 5-100 nanometers in diameter (a nanometer is a millionth of a millimeter), these tiny, needle-shaped crystalline structures can alter ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.