Scientists reveal structure of amino acid transporter involved in cancer

June 6, 2018, University of Groningen
University of Groningen scientists involved in the study -- left to right, standing: D.J. Slotboom, A. Guskov, A.A. Garaeva, C. Paulino -- seated: G.T. Oostergetel. Credit: University of Groningen

The human glutamine transporter ASCT2 is upregulated in several forms of cancer. It is also the docking platform for a wide range of pathogenic retroviruses. A team of University of Groningen scientists have used cryo-electron microscopy to elucidate the structure of the protein, which may generate leads for drug development. The results were published in Nature Structural & Molecular Biology on 5 June.

In human cells, the ASCT2 protein imports the amino acid glutamine and maintains the amino acid balance in many tissues. The amount of ASCT2 is increased in several types of cancer, probably because of an increased demand for glutamine. Furthermore, several types of retrovirus infect human cells by first docking on this protein.

ASCT2 is part of a larger family of similar transporters. To understand how this family of works, and to help design drugs that block glutamine transport by ASCT2 or its role as a viral docking station, University of Groningen scientists have resolved the 3-D of the protein. They resorted to the technique of single particle , as they did not succeed in growing crystals from the protein, which are required for X-ray diffraction studies. The human gene for ASCT2 was expressed in yeast cells, and the human protein was purified for imaging.

The structure was determined at a resolution of 3.85 Ă…, which revealed striking new insights. "It was a challenging target, as it is rather small for cryo-EM," says Assistant Professor of Structural Biology Cristina Paulino, who is head of the University's Cryo-EM unit. "But it also has a nice symmetric trimeric structure, which helps."

Lift-structure

The cryo-EM images reveal a familiar type of lift-structure, in which part of the protein travels up and down through the cell membrane. In the upper position, substrate enters the lift, which then moves down to release the substrate inside the cell. The structure of ASCT2 revealed the lift in the lower position. "To our surprise, this part of the protein was further down then we had ever seen before in similar protein structures," says Biochemistry Professor Dirk Slotboom. "And it was rotated. It had been thought that the substrate enters and leaves the lift through different openings, but our results suggest it might well use the same opening."

This information could help design molecules that stop glutamine transport by ASCT2, says Albert Guskov, assistant professor in crystallography. "Some tests in mice with small molecules that block transport have been published." Blocking glutamine transport would be a way to kill cancer cells. "This new structure allows for a more rational design of transport inhibitors."

Another surprise observation are the spikes that protrude on the outside of each of the three monomers. "They have never been seen before," says Slotboom. "These are the places where retroviruses dock." This is consistent with mutagenic studies performed by others. Again, knowing the shape of the spikes could help design molecules which block the viruses from docking.

The protein structure was resolved in about four months, which is remarkably fast for cryo-EM. A multidisciplinary group of scientists worked in parallel, which sped up the process. Furthermore, Ph.D. student Alisa Garaeva, who is first author of the paper, played a central role in ensuring the project ran efficiently.

Future studies will be done to capture ASCT2 in different configurations, for example inside a lipid bilayer rather than the detergent micelles used in the present study, and with the lift in different positions. Paulino, Slotboom and Guskov conclude that studying different states will help them understand how this functions.

Explore further: New method for interpreting cryo-EM maps makes it easier to determine protein structures

More information: Alisa A. Garaeva et al, Cryo-EM structure of the human neutral amino acid transporter ASCT2, Nature Structural & Molecular Biology (2018). DOI: 10.1038/s41594-018-0076-y

Related Stories

Researchers find a way to 'starve' cancer

January 18, 2018

Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

Detailed view of a molecular toxin transporter

May 30, 2017

Transport proteins in the cells of our body protect us from particular toxins. Researchers at ETH Zurich and the University of Basel have now determined the high-resolution three-dimensional structure of a major human transport ...

Recommended for you

Transforming carbon dioxide

August 21, 2018

A team of researchers at the University of Delaware's Center for Catalytic Science and Technology (CCST) has discovered a novel two-step process to increase the efficiency of carbon dioxide (CO2) electrolysis, a chemical ...

Gut bacteria provide key to making universal blood

August 21, 2018

In January, raging storms caused medical emergencies along the U.S. East Coast, prompting the Red Cross to issue an urgent call for blood donations. The nation's blood supply was especially in need of O-type blood that can ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.