A new micro-robot delivers drugs in capsules

June 12, 2018, Daegu Gyeongbuk Institute of Science and Technology

An international team of researchers, led by Professor Hongsoo Choi, Director of DGIST-ETH Microrobot Research Center, has developed capsule-type microrobots that can encapsulate cells and drugs and deliver them to targeted parts of the human body. Unlike conventional methods that install cells or drugs outside of micro robots, the lids of these microrobots can be open and closed.

Professor Choi has suggested capsule-type microrobots by utilizing a capsule structure that can encapsulate and drugs and a propulsion system that mimics bacteria through a joint research with Professor Cheil Moon's research team from the Department of Brain and Cognitive Sciences and Professor Bradley J. Nelson's research team from the Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland (Swiss Federal Institute of Technology Zurich).

The development of new technologies in the healthcare market and medical devices has been accelerating worldwide, and research in high-tech medical robotics fields such as microrobots that can deliver drugs or cells to desired areas of the body is actively underway.

Until now, most microrobots for cell and drug delivery have been mounted on the outer surface of the robots in various ways; have been fabricated into a mixture of biodegradable materials of cells or drugs that were released as the biodegradable materials were dismantled; have been developed in the form of magnetic particles for cell and delivery. The limitations of these types of robots are that cells and drugs can be lost by external environments when the robots are operated inside the human body.

To overcome these limitations, the researchers developed capsule-type microrobots by combining a cap-type structure that enables opening and closing in the head of microrobots and encapsulating cells or drugs and a propulsion system that mimics the movement of the tail of bacteria.

Out of technologies for Micro Electro Mechanical Systems (MEMS), the research team developed a three-dimensional polymer structure using a three-dimensional laser lithography system. In addition, nickel (Ni), which is a magnetic material, and titanium (Ti), which is a bio-compatible material, were deposited on the surface of the capsule-type microrobots so they could be operated by an .

In an experiment involving capsule-type microrobots using magnetic fields, particles measuring tens of micrometers (㎛, one-millionth of a meter) were transferred using a 'pick and drop motion.' In addition, bio-compatibility experiments, which delivered to the correct location by encapsulating real olfactory receptor neurons (ORN), have been successfully completed.

The capsule-type microrobots developed by the research team can contain cells or drugs and release them at any target location by using the vortex of fluid; thus, they can minimize the loss of cells or drugs in the external environment thereby delivering correct volumes. It is expected that this finding can be used to treat diseases such as degeneration of the retina by being able to maneuver in low-flow fluids in the such as the eyes and the brain.

Professor Choi said, "With the use of capsule-type microrobots, cells and drugs can be encapsulated and released at desired locations, so loss and denaturation of cells and drugs due to the external environment can be prevented. We will conduct further research to provide various medical applications in the future."

Meanwhile, this research outcome was published as the cover story in the May 9 issue of Advanced Health Care Materials, an international journal in the field of biomaterials; the research was conducted with support from the Korean Ministry of Science and ICT and the Korean Ministry of Trade, Industry, and Energy.

Explore further: Research team develops world's first ciliary stroke motion microrobots

More information: Seungmin Lee et al. A Capsule-Type Microrobot with Pick-and-Drop Motion for Targeted Drug and Cell Delivery, Advanced Healthcare Materials (2018). DOI: 10.1002/adhm.201700985

Related Stories

Microrobots inspired by nature

May 16, 2017

A revolutionary design mimics the rowing action of the cilia on single-celled Paramecium, demonstrating much faster movement than conventional microrobots.

New remote-controlled microrobots for medical operations

July 22, 2016

For the past few years, scientists around the world have been studying ways to use miniature robots to better treat a variety of diseases. The robots are designed to enter the human body, where they can deliver drugs at specificlocations ...

Microagents with revolutionary potential

March 22, 2016

Micro and nanorobots that attack tumors with maximum precision using drugs: this is what the fight against cancer may look like in the future. A group of ETH researchers led by Salvador Pané are laying the foundations with ...

Recommended for you

Not all stem cells are created equal, study reveals

March 22, 2019

Researchers from the University of Toronto's Institute for Biomaterials and Biomedical Engineering (IBBME) and the Donnelly Centre have discovered a population of cells – dubbed to be "elite" – that play a key role in ...

Ancient birds out of the egg running

March 22, 2019

The ~125 million-year-old Early Cretaceous fossil beds of Los Hoyas, Spain, have long been known for producing thousands of petrified fish and reptiles (Fig. 1). However, researchers have uncovered an extremely rare, nearly ...

Making solar cells is like buttering bread

March 22, 2019

Formamidinium lead iodide is a very good material for photovoltaic cells, but getting the correct stable crystal structure is a challenge. The techniques developed so far have produced poor results. However, University of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.