Game-changing finding pushes 3-D printing to the molecular limit

June 19, 2018, University of Nottingham
Credit: University of Nottingham

New University of Nottingham research proves that advanced materials containing molecules that switch states in response to environmental stimuli such as light can be fabricated using 3-D printing.

The study findings have the potential to vastly increase the functional capabilities of 3-D-printed devices for industries such as electronics, healthcare and .

The research, led by Dr. Victor Sans Sangorrin from the Faculty of Engineering and Dr. Graham Newton from the School of Chemistry, is published in the academic journal, Advanced Materials.

"This bottom-up approach to device fabrication will push the boundaries of additive manufacturing like never before. Using a unique integrated design approach, we have demonstrated functional synergy between photochromic molecules and polymers in a fully 3-D-printed device. Our approach expands the toolbox of available to engineers developing devices for real-world problems," explains Dr. Sans.

3D printed material with photochromic molecules used to produce Sans Newton Research Groups logo. Credit: Victor Sans Sangorrin

To demonstrate their concept, the team developed a photoactive molecule that changes from colourless to blue when irradiated with light. The colour change can then be reversed by exposure to oxygen from the air.

The researchers then 3-D-printed composite materials by combining the photoactive molecules with a tailor-made polymer, yielding a new material that can store information reversibly.

Credit: University of Nottingham

Dr. Newton, said: "We can now take any molecules that change properties upon exposure to light and print them into composites with almost any shape or size. In theory, it would be possible to reversibly encode something quite complex like a QR code or a barcode, and then wipe the material clean, almost like cleaning a whiteboard with an eraser. While our devices currently operate using colour changes, this approach could be used to develop for energy storage and electronics."

Explore further: Smart ink adds new dimensions to 3-D printing

More information: Dominic J. Wales et al. 3D-Printable Photochromic Molecular Materials for Reversible Information Storage, Advanced Materials (2018). DOI: 10.1002/adma.201800159

Related Stories

Smart ink adds new dimensions to 3-D printing

April 4, 2018

Researchers at Dartmouth College have developed a smart ink that turns 3D-printed structures into objects that can change shape and color. The innovation promises to add even more functionality to 3D printing and could pave ...

New 3-D printer can create complex biological tissues

May 21, 2018

A UCLA Samueli-led team has developed a specially adapted 3-D printer to build therapeutic biomaterials from multiple materials. The advance could be a step toward on-demand printing of complex artificial tissues for use ...

Researchers review the state of printed organic electronics

January 19, 2017

While the world of electronics devices was radically different 30 years ago when Sumitomo Chemical (SC) began developing printed electronics technology, the company had already felt it was an area where they could make a ...

Recommended for you

After a reset, Сuriosity is operating normally

February 23, 2019

NASA's Curiosity rover is busy making new discoveries on Mars. The rover has been climbing Mount Sharp since 2014 and recently reached a clay region that may offer new clues about the ancient Martian environment's potential ...

Study: With Twitter, race of the messenger matters

February 23, 2019

When NFL player Colin Kaepernick took a knee during the national anthem to protest police brutality and racial injustice, the ensuing debate took traditional and social media by storm. University of Kansas researchers have ...

Solving the jet/cocoon riddle of a gravitational wave event

February 22, 2019

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.