Scientists discover new magnetic element

May 25, 2018, University of Minnesota
This schematic illustrates how a tetragonal phase of Ru has been forced using ultra thin film growth methods. Credit: University of Minnesota, Quarterman et al, Nature Communications

A new experimental discovery, led by researchers at the University of Minnesota, demonstrates that the chemical element ruthenium (Ru) is the fourth single element to have unique magnetic properties at room temperature. The discovery could be used to improve sensors, devices in the computer memory and logic industry, or other devices using magnetic materials.

The use of ferromagnetism, or the basic mechanism by which certain materials (such as iron) form permanent magnets or are attracted to magnets, reaches back as far as ancient times when lodestone was used for navigation. Since then only three elements on the periodic table have been found to be ferromagnetic at —iron (Fe), cobalt (Co), and nickel (Ni). The rare earth element gadolinium (Gd) nearly misses by only 8 degrees Celsius.

Magnetic materials are very important in industry and modern technology and have been used for fundamental studies and in many everyday applications such as sensors, electric motors, generators, hard disk media, and most recently spintronic memories. As thin film growth has improved over the past few decades, so has the ability to control the structure of crystal lattices—or even force structures that are impossible in nature. This new study demonstrates that Ru can be the fourth single element ferromagnetic material by using ultra-thin films to force the ferromagnetic phase.

The details of their work are published in the most recent issue of Nature Communications. The lead author of the paper is a recent University of Minnesota Ph.D. graduate Patrick Quarterman, who is a National Research Council (NRC) postdoctoral fellow at the National Institute of Standards and Technology (NIST).

"Magnetism is always amazing. It proves itself again. We are excited and grateful to be the first group to experimentally demonstrate and add the fourth ferromagnetic element at room temperature to the periodic table," said University of Minnesota Robert F. Hartmann professor of electrical and computer engineering Jian-Ping Wang, the corresponding author for the paper and Quarterman's advisor.

"This is an exciting but hard problem. It took us about two years to find a right way to grow this material and validate it. This work will trigger magnetic research community to look into fundamental aspects of magnetism for many well-known elements," Wang added.

Other members of the team also stressed the importance of this work.

This high resolution electron microscopy image confirms the tetragonal phase of Ru as predicted by the study authors. Credit: University of Minnesota, Quarterman et al, Nature Communications

"The ability to manipulate and characterize matter at the atomic scale is the cornerstone of modern information technology," said study co-author Paul Voyles, a Beckwith-Bascom Professor and Chair of the Department of Materials Science and Engineering at the University of Wisconsin-Madison. "Our collaboration with University of Minnesota Professor Wang's group shows that these tools can find new things even in the simplest systems, consisting of a just a single element."

Industry partners agree that collaboration is key to innovation

"Intel is pleased with the long-term research collaboration it has with the University of Minnesota and C-SPIN [Center for Spintronic Materials, Interfaces, and Novel Architectures], said Ian A. Young, Senior Fellow and Director at Intel Corporation. "We are excited to share these developments enabled by exploring the behavior of quantum effects in materials, which may provide insights for innovative energy efficient logic and memory devices." Other industry leaders agree that this discovery will have an impact on the semiconductor industry.

"Spintronic devices are of rapidly increasing importance to the semiconductor industry," said Todd Younkin, the director of Defense Advanced Research Projects Agency (DARPA)-sponsored consortia at Semiconductor Research Corporation (SRC). "Fundamental advances in our understanding of , such as those demonstrated in this study by Professor Wang and his team, is critical to realizing continued breakthroughs in computing performance and efficiency."

Novel technologies require novel materials

Magnetic recording is still the dominant player in data storage technology, but magnetic based random-access memory and computing is beginning to take its place. These magnetic memories and logic devices put additional constraints on the magnetic materials, where data is stored and computed, compared to traditional hard disk media magnetic materials. This push for novel materials has led to renewed interest in attempts to realize predictions which show that under the right conditions, non-ferromagnetic , such as Ru, palladium (Pd) and osmium (Os) can become ferromagnetic.

Building upon the established theoretical predictions, researchers at the University of Minnesota used seed layer engineering to force the tetragonal phase of Ru, which prefers to have a hexagonal configuration, and observed the first instance of ferromagnetism in a single element at room temperature. The crystal structure and magnetic properties were extensively characterized by collaborating with the University of Minnesota's Characterization Facility and colleagues at the University of Wisconsin.

The researchers said this study opens the door to fundamental studies of this new ferromagnetic Ru. From an application perspective, Ru is interesting because it is resistant to oxidation, and additional theoretical predictions claim it has a high thermal stability—a vital requirement for scaling magnetic memories. Examination of this high thermal stability is the focus of ongoing research at the University of Minnesota.

Explore further: Researchers demonstrate the existence of a new kind of magnetoresistance involving topological insulators

More information: P. Quarterman et al, Demonstration of Ru as the 4th ferromagnetic element at room temperature, Nature Communications (2018). DOI: 10.1038/s41467-018-04512-1

Related Stories

Room-temperature multiferroic thin films and their properties

January 8, 2018

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated ...

Mediating magnetism

May 4, 2011

(PhysOrg.com) -- Titanium oxide doped with cobalt produces magnetic properties at room temperature via a newly discovered mechanism.

Recommended for you

How community structure affects the resilience of a network

June 22, 2018

Network theory is a method for analyzing the connections between nodes in a system. One of the most compelling aspects of network theory is that discoveries related to one field, such as cellular biology, can be abstracted ...

The pho­to­elec­tric ef­fect in stereo

June 22, 2018

In the photoelectric effect, a photon ejects an electron from a material. Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. From their results they can deduce ...

Water can be very dead, electrically speaking

June 21, 2018

In a study published in Science this week, the researchers describe the dielectric properties of water that is only a few molecules thick. Such water was previously predicted to exhibit a reduced electric response but it ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Anonym819911
not rated yet May 26, 2018
muy interesan
ZoeBell
not rated yet May 26, 2018
Since then only three elements on the periodic table have been found to be ferromagnetic
I seriously doubt it, for example graphite can be also ferromagnetic at room temperature. This guy even presents it as an evidence of "nuclear transmutation of carbon to iron" (which is indeed nonsense) during his public lectures after placing graphite into an microwave - so that we could say, it's already utilized commercially... ;-) Literary every element with pi-, f- or d- orbitals could be made ferromagnetic once its structure will get deformed enough.
milnik
not rated yet May 27, 2018
Science has to find out once: every chemical element is magnetic, if there are more proton neutrons. The problem is that these properties change depending on the tempeature and the neutron breakdown time.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.