Room-temperature multiferroic thin films and their properties

January 8, 2018, Tokyo Institute of Technology
Spontaneous polarization appears to be parallel with the c-axis, while spontaneous magnetism appears to be parallel with the a-axis. Credit: None

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They have fascinating properties such as magnetic (electric) field-controlled ferroelectric (ferromagnetic) properties and can be used in novel technological applications such as fast-writing, power-saving, and nondestructive data storage. However, because multiferroicity is typically observed at low temperatures, it is highly desirable to develop that can be observed at room temperature.

GaxFe2-xO3, or GFO for short, is a promising room-temperature multiferroic material because of its large magnetization. GFO thin films have already been successfully fabricated, and their polarization switching at room temperature has been demonstrated. However, their ferroelectric and must be controlled to realize better magnetoelectric properties and applications of GFO films. In order to control these properties, it is essential to understand the relationship between the constituent composition at each cation site and the original character.

Therefore, the research team led by Mitsuru Ito at Tokyo Tech set out to systematically investigate multiferroicity as a function of the compositional ratio of Ga and Fe in GFO films. Specifically, they studied the of the GFO films using piezoresponse force microscopy, and found that GaxFe2-xO3 films with x = 1 and 0.6 show ferroelectricity at room temperature. The piezoresponse phase can be reversed by 180° when a voltage of more than 4.5 V is applied. This behavior is typical of ferroelectric materials and is a strong indicator of the presence of switchable polarization in the film at room temperature.

From top left to right, x is equal to a) 0, b) 0.3, c) 0.4, and d) 0.6 at 300 K. Credit: Advanced Functional Materials

The scientists also confirmed room-temperature ferrimagnetism of the films through magnetic characterization. Lastly, they were able to demonstrate the room-temperature magnetocapacitance effects of the GFO . They reported that by changing x, the coercive electric field, coercive force, and saturated magnetism values could be controlled. They also showed that the ferroelectric and magnetic ranges of GFO-type iron oxides differ from those of the well-known room-temperature multiferroic BiFeO2 and may expand the variety of multiferroic .

Explore further: New material with ferroelectricity and ferromagnetism may lead to better computer memory

More information: Tsukasa Katayama et al, Ferroelectric and Magnetic Properties in Room-Temperature Multiferroic Ga x Fe2−xO3 Epitaxial Thin Films, Advanced Functional Materials (2017). DOI: 10.1002/adfm.201704789

Related Stories

New multiferroic materials from building blocks

September 30, 2016

A research group in Japan successfully developed room temperature multiferroic materials by a layer-by-layer assembly of nanosheet building blocks. Multiferroic materials are expected to play a vital role in the development ...

Oxyhalides—a new class of high-tc multiferroic materials

June 21, 2016

Novel devices capable of rapidly and reliably switching magnetic states by acting on the electronic charge state are predicted to be of prime importance for tomorrow's data storage. Their realization will depend on the availability ...

Recommended for you

New study explores cell mechanics at work

June 19, 2018

It's a remarkable choreography. In each of our bodies, more than 37 trillion cells tightly coordinate with other cells to organize into the numerous tissues and organs that make us tick.

The secret to measuring the energy of an antineutrino

June 18, 2018

Scientists study tiny particles called neutrinos to learn about how our universe evolved. These particles, well-known for being tough to detect, could tell the story of how matter won out over antimatter a fraction of a second ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.