Oxyhalides—a new class of high-tc multiferroic materials

June 21, 2016, Institut Laue-Langevin
Oxyhalides—a new class of high-tc multiferroic materials
Fig a: The corresponding OCu4 tetrahedral chains (orange)

Novel devices capable of rapidly and reliably switching magnetic states by acting on the electronic charge state are predicted to be of prime importance for tomorrow's data storage. Their realization will depend on the availability of materials that possess coupled ferromagnetic and ferroelectric order. Ferromagnetic order relies on the parallel alignment of magnetic moments created by the spin of the electrons. Ferroelectric order arises when ensembles of charges of opposite sign are displaced with respect to each other thus creating electric polarization. Coupled multiferroicity is observed when the alignment of the magnetic moments induces the charge separation and vice versa.

To be of practical usefulness the coupling should be strong and survive to high temperatures. Given their potential impact on future electronics devices multiferroic materials have triggered an immense interest among the scientific community. There is in particular a continuous quest for new material classes with higher transition temperatures Tc.

A team from the Max Planck institute in Dresden in collaboration with ILL scientists has just reported the discovery of such a novel class of multiferroic materials. The structure of these transition metal oxyhalides can be seen in Figure a. With a critical temperature of approximately 70 K these multiferroics have to be classified as high-Tc materials. The magnetic structure (see Figure b) has been determined with neutron diffraction at the ILL on the instrument D1B.

The fact that the ferroelectric order sets in simultaneously with the magnetic order indicates that ferroelectricity is induced by the spins. This coupling and the comparably high value of the transition temperature are a progress on the way to future electronic devices. Compared to other binary copper compounds the oxyhalides allow for more chemical substitutions. Thus, by judiciously playing with the chemical composition in this class of the multiferroic properties might be enhanced even further.

Oxyhalides—a new class of high-tc multiferroic materials
Fig b: Incommensurate magnetic structure of Cu2OCl2: the spin structure

Explore further: Crystal and magnetic structure of multiferroic hexagonal manganite

Related Stories

Multiferroics could lead to low-power devices

May 17, 2011

(PhysOrg.com) -- Magnetic materials in which the north and south poles can be reversed with an electric field may be ideal candidates for low-power electronic devices, such as those used for ultra-high data storage. But finding ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.