Direct optical reading of single-molecule DNA bases in modified nanopores

May 3, 2018, IMEC
Credit: IMEC

In a Nature Communications paper published this week, IMEC, the world-leading research and innovation hub in nano-electronics and digital technology, describes a new concept for direct identification of single DNA bases. The technique has the potential to detect, with an unprecedented spatial resolution and without any labeling, the genetic code, as well as epigenetic variations in DNA. The combination of nanopore fluidics and surface enhanced Raman spectroscopy makes it a unique concept and a very promising tool for evolutionary biologists and for research on disease development.

Today, direct, real-time identification of nucleobases in DNA strands in nanopores is limited by the sensitivity and the spatial resolution of established ionic sensing strategies. In addition, established DNA sequencing techniques often use fluorescent labeling which is costly and time-consuming. In its Nature Communications paper, IMEC demonstrated a promising alternative based on , with no need for labeling and with the unique ability to identify nucleobases, individually, and incorporated in a DNA strand. The technique is based on nanofluidics to drive the DNA strand through an engineered plasmonic nanoslit, and surface enhanced Raman spectroscopy to make a 'fingerprint' of the adsorbed nucleobases up to the level of molecular bonds. The spectroscopic signal is enhanced both by a gold coating on top of the nanoslit, and the engineered shape of the nanoslit.

"The result reported here is an important step towards a solution for fast and direct sequencing up to the epigenetic level," stated and Chang Chen, senior researcher at IMEC.

The signal generated by Raman spectroscopy holds a lot of information about the molecules and the molecular bonds. Not only can the DNA code be 'read', but also base modifications such as methylation, histone acetylation, and microRNA modification, which carry more detailed information about epigenetic variations. Such variations are important for evolutionary studies as they influence gene expression in cells. Moreover, they have been shown to impact the origin and development of diseases such as cancer.

"We leverage our world-class expertise in chip design and 300 mm Si wafer manufacturing technology and bio-lab facilities to develop tailored solutions for the life sciences industry," stated Pol Van Dorpe, principal member of technical staff. "The solution we describe here is only one example of the technologies we are working on. Our toolbox includes knowledge on nanopores, , photonics, single-molecule detection and nanofluidics which we use in developing next-generation solutions for our industry partners in genomics and diagnostics."

Explore further: Researchers use Raman spectroscopy and STM to allow chemical mapping of molecules to 1nm resolution

More information: Chang Chen et al. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing, Nature Communications (2018). DOI: 10.1038/s41467-018-04118-7

Related Stories

Genetic Material under a Magnifying Glass

January 28, 2008

The genetic alphabet contains four letters. Although our cells can readily decipher our genetic molecules, it isn’t so easy for us to read a DNA sequence in the laboratory. Scientists require complex, highly sophisticated ...

Silver nanoparticles take spectroscopy to new dimension

January 2, 2018

As medicine and pharmacology investigate nanoscale processes, it has become increasingly important to identify and characterize different molecules. Raman spectroscopy, a technique that leverages the scattering of laser light ...

Exploring catalytic reactions at the nanoscale

September 21, 2015

The National Physical Laboratory (NPL) has used a novel imaging capability - tip-enhanced Raman spectroscopy - to map catalytic reactions at the nanoscale for the first time.

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.