Silver nanoparticles take spectroscopy to new dimension

January 2, 2018, American Institute of Physics
Detection of a low concentration analyte molecule using silicon nanowires decorated with silver nanoparticles and surface enhanced Raman scattering measurements. Credit: V.S. Vendamani

As medicine and pharmacology investigate nanoscale processes, it has become increasingly important to identify and characterize different molecules. Raman spectroscopy, a technique that leverages the scattering of laser light to identify molecules, has a limited capacity to detect molecules in diluted samples because of low signal yield.

A team of researchers from the University of Hyderabad in India has improved molecular detection at low concentration levels by arranging nanoparticles on nanowires to enhance Raman spectroscopy. Surface-enhanced Raman spectroscopy (SERS) uses electromagnetic fields to improve Raman scattering and boost sensitivity in standard dyes such as R6G by more than one billionfold.

The team decorated vertically aligned silicon nanowires with varying densities of silver nanoparticles, utilizing and enhancing the structure's 3-D shape. Their results, published in the Journal of Applied Physics, show that their device was able to enhance the Raman signals for cytosine protein and ammonium perchlorate by a factor of 100,000.

"The beauty is that we can improve the density of these nanowires using simple chemistry," said Soma Venugopal Rao, one of the paper's authors. "If you have a large density of nanowires, you can put more silver nanoparticles into the substrate and can increase the sensitivity of the substrate."

Applying the necessary nanostructures to SERS devices remains a challenge for the field. Building these structures in three dimensions with silicon nanowires has garnered attention for their higher surface area and superior performance, but silicon nanowires are still expensive to produce.

Instead, the team was able to find a cheaper way to make and used a technique called electroless etching to make a wide range of nanowires. They "decorated" these wires with with variable and controlled densities, which increased the nanowires' surface area.

"Optimizing these vertically aligned structures took a lot of time in the beginning," said Nageswara Rao, another of the paper's authors. "We increased the surface area and to do this we needed to change the aspect ratio."

After optimizing their system to detect Rhodamine dye on a nanomolar level, these new substrates the team built enhanced Raman sensitivity by a factor of 10,000 to 100,000. The substrates detected concentrations of cytosine, a nucleotide found in DNA, and ammonium perchlorate, a molecule with potential for detecting explosives, in as dilute concentrations as 50 and 10 micromolar, respectively.

The results have given the team reason to believe that it might soon be possible to detect compounds in concentrations on the scale of nanomolar or even picomolar, Nageswara Rao said. The team's work has opened several avenues for future research, from experimenting with different nanoparticles such as gold, increasing the sharpness of the nanowires or testing these devices across several types of molecules.

Explore further: Eco-friendly production of silicon nanowires

More information: V. S. Vendamani et al, Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection, Journal of Applied Physics (2018). DOI: 10.1063/1.5000994

Related Stories

Eco-friendly production of silicon nanowires

October 19, 2016

Physicists from the Lomonosov Moscow State University have worked out a new and more eco-friendly method of obtaining silicon nanowires that replaces hydrofluoric acid (HF) with ammonium fluoride (NH4F).

Researchers develop highly sensitive gas sensors

December 27, 2017

A team from the Faculty of Physics of Lomonosov Moscow State University has suggested using porous silicon nanowire arrays in highly sensitive gas sensors. These devices will be able to detect the presence of toxic and non-toxic ...

Biosensors: Sweet and simple

April 14, 2011

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and versatile analytical tool that is widely used in biosensing applications. In conventional Raman spectroscopy, molecules are detected by their characteristic ...

Recommended for you

How to mass produce cell-sized robots

October 23, 2018

Tiny robots no bigger than a cell could be mass-produced using a new method developed by researchers at MIT. The microscopic devices, which the team calls "syncells" (short for synthetic cells), might eventually be used to ...

Nanosized ferroelectrics become a reality

October 22, 2018

Using ferroelectricity instead of magnetism in computer memory saves energy. If ferroelectric bits were nanosized, this would also save space. But conventional wisdom dictates that ferroelectric properties disappear when ...

Taking steps toward a wearable artificial kidney

October 17, 2018

There just aren't enough kidney transplants available for the millions of people with renal failure. Aside from a transplant, the only alternative for patients is to undergo regular dialysis sessions to clear harmful cellular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.