Silicon nanowires fabricated via imprinting technology could be the future for transistor-based biosensors

March 1, 2017
[Left] Schematic of a DG FET, [middle] SEM image of a cross-section of SiNWs fabricated on a silicon-on-insulator wafer and [right] change in the response voltage of planar and SiNW pH sensors for a wide range of pH (3–10). Credit: ©2016 Cheol-Min Lim, In-Kyu Lee, Ki Joong Lee, Young Kyoung Oh, Yong-Beom Shin and Won-Ju Cho.

Korean researchers are improving the fabrication of transistor-based biosensors by using silicon nanowires on their surface.

The team, led by Won-Ju Cho of Kwangwoon University in Seoul, based their device on the 'dual-gate field-effect transistor' (DG FET).

When molecules bind on a field-effect transistor, a change happens in the surface's electric charge. This makes FETs good candidates for detecting biological and chemical elements. Dual-gate FETs are particularly good candidates because they amplify this signal several times. But they can still be improved.

The team used a called 'nanoimprint lithography' to fabricate silicon nanowires onto the surface of a DG FET and compared its sensitivity and stability with conventional DG FETs.

Field-effect transistors using silicon nanowires have already been drawing attention as promising biosensors because of their high sensitivity and selectivity, but they are difficult to manufacture. The size and position of silicon nanowires fabricated using a bottom-up approach, such as , cannot always be perfectly controlled. Top-down approaches, such as using an electron or ion beam to draw nanorods onto a surface, allow better control of size and shape, yet they are expensive and limited by low throughput.

Cho and his colleagues fabricated their silicon nanowires using nanoimprint lithography. In this method, a thin layer of silicon was placed on top of a substrate. This layer was then pressed using a nanoimprinter, which imprints nano-sized wire-shaped lines into the . The areas between separate lines were then removed using a method called dry etching, which involves bombarding the material with chlorine ions. The resultant were then added to a DG FET.

The team found that their device was more stable and sensitive than conventional DG FETs. "We expect that the -nanowire DG FET sensor proposed here could be developed into a promising label-free sensor for various biological events, such as enzyme–substrate reactions, antigen–antibody bindings and nucleic acid hybridizations [a method used to detect gene sequences]," conclude the researchers in their study published in the journal Science and Technology of Advanced Materials.

Explore further: Eco-friendly production of silicon nanowires

More information: Cheol-Min Lim et al. Improved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography, Science and Technology of Advanced Materials (2017). DOI: 10.1080/14686996.2016.1253409

Related Stories

Eco-friendly production of silicon nanowires

October 19, 2016

Physicists from the Lomonosov Moscow State University have worked out a new and more eco-friendly method of obtaining silicon nanowires that replaces hydrofluoric acid (HF) with ammonium fluoride (NH4F).

Probing quantum phenomena in tiny transistors

July 7, 2016

Nearly 1,000 times thinner than a human hair, nanowires can only be understood with quantum mechanics. Using quantum models, physicists from Michigan Technological University have figured out what drives the efficiency of ...

New nanowire transistors may help keep Moore's Law alive

May 2, 2013

(Phys.org) —Two French researchers, Guilhem Larrieu and Xiang‑Lei Han, may have succeeded in possibly setting back the date to which Moore's Law would no longer apply by creating a new kind of nanowire Field-Effect Transistor ...

A novel method of making high-quality vertical nanowires

August 29, 2016

Researchers at Hokkaido University describe a novel method of making high quality vertical nanowires with full control over their size, density and distribution over a semi-conducting substrate. The findings are reported ...

Recommended for you

Chemists create 3-D printed graphene foam

June 21, 2017

Nanotechnologists from Rice University and China's Tianjin University have used 3-D laser printing to fabricate centimeter-sized objects of atomically thin graphene.

Plant inspiration could lead to flexible electronics

June 21, 2017

Versatile, light-weight materials that are both strong and resilient are crucial for the development of flexible electronics, such as bendable tablets and wearable sensors. Aerogels are good candidates for such applications, ...

Neuron transistor behaves like a brain neuron

June 20, 2017

(Phys.org)—Researchers have built a new type of "neuron transistor"—a transistor that behaves like a neuron in a living brain. These devices could form the building blocks of neuromorphic hardware that may offer unprecedented ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.