Survival strategy: How one enzyme helps bacteria recover from exposure to antibiotics

April 9, 2018, University of Notre Dame
Shahriar Mobashery, Navari Family Professor in Life Sciences at Notre Dame and lead author of the study. Credit: Matt Cashore/University of Notre Dame

Beta-lactam antibiotics, including penicillin, are one of the most widely used classes of antibiotics in the world. Though they've been in use since the 1940s, scientists still don't fully understand what happens when this class of drugs encounters bacteria.

Now, researchers at the University of Notre Dame have elucidated how an helps rebound from damage inflicted by not strong enough to immediately kill the bacteria on contact.

The study, published in the Proceedings of the National Academy of Sciences, focuses on an enzyme in gram-negative bacterium Pseudomonas aeruginosa, a pathogen that causes pneumonia and sepsis. The enzyme, called lytic transglycosylase Slt, rapidly attempts repair of the organism's , which allows the bacterium to survive and infection to proceed unabated.

"It's a survival strategy," said Shahriar Mobashery, Navari Family Professor in Life Sciences at Notre Dame and lead author of the study. "The cell wall is the structural entity that encases the entire bacterium, and its health is critical for the survival of the bacteria. If you have a drug that inflicts damage to the cell wall, the bacterium cannot cope with it and it dies."

P. aeruginosa is one of the "nightmare bacteria" highlighted in a recent report from the Centers for Disease Control and Prevention. The report stated that lab tests had found "unusual resistance more than 200 times in 2017 in 'nightmare bacteria' alone."

The cell walls of P. aeruginosa are made of long, adjacent units that are cross-linked together. In the presence of a beta-lactam antibiotic, the cross-links are not formed. However, long chains of uncross-linked polymers remain, which signal that the cell wall is damaged. That is where Slt comes in. The enzyme recognizes the damage and chops down the long chains of uncross-linked polymers, and the organism rebuilds the cell wall.

"It's sort of like if you're driving home and get into a fender bender, and by the time you get home, your car is already repaired," said Mobashery.

Scientists have known about both families of enzymes for some time. Mobashery's team synthesized pieces of the cell wall and studied it with Slt to determine how the enzyme degrades it. They sent purified Slt and cell wall samples to collaborators at the Spanish National Research Council to determine its structure.

Mobashery has studied antibiotic resistance for 30 years. He said penicillin-binding proteins have been studied since the 1960s and lytic transglycosylases since the 1990s—but the issue of how they come together is new. Because of , this has become one of the most difficult bacterial pathogens to treat.

Explore further: Chemists shed new light on antibiotics and the survival of bacteria

More information: Mijoon Lee el al., "Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of Pseudomonas aeruginosa," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1801298115

Related Stories

New paper sheds light on bacterial cell wall recycling

September 8, 2008

A new paper by a team of researchers led by Shahriar Mobashery, Navari Family Professor of Life Sciences at the University of Notre Dame, provides important new insights into the process by which bacteria recycle their cell ...

Natural sniper kills hospital bacterium

March 20, 2018

Bacteria produce proteins to take out specific competitors. One of these proteins can kill the hospital bacterium pseudomonas aeruginosa. Microbial geneticists at KU Leuven, Belgium, have unraveled how this protein launches ...

Researchers uncover keys to antibiotic resistance in MRSA

October 4, 2013

(Phys.org) —University of Notre Dame researchers Shahriar Mobashery and Mayland Chang and their collaborators in Spain have published research results this week that show how methicillin-resistant Staphylococcus aureus ...

Researchers analyze how new anti-MRSA abtibiotics function

July 28, 2008

A new paper by Shahriar Mobashery, Navari Family Professor in Life Sciences at the University of Notre Dame, and researchers in his lab provides important insights into promising new antibiotics aimed at combating MRSA.

Recommended for you

Detecting metabolites at close range

June 22, 2018

A novel concept for a biosensor of the metabolite lactate combines an electron transporting polymer with lactate oxidase, which is the enzyme that specifically catalyzes the oxidation of lactate. Lactate is associated with ...

Research team uncovers lost images from the 19th century

June 22, 2018

Art curators will be able to recover images on daguerreotypes, the earliest form of photography that used silver plates, after a team of scientists led by Western University learned how to use light to see through degradation ...

CryoEM study captures opioid signaling in the act

June 22, 2018

Opioid drugs like morphine and fentanyl are a mainstay of modern pain medicine. But they also cause constipation, are highly addictive, and can lead to fatal respiratory failure if taken at too high a dose. Scientists have ...

Researchers achieve unprecedented control of polymer grids

June 21, 2018

Synthetic polymers are ubiquitous—nylon, polyester, Teflon and epoxy, to name just a few—and these polymers are all long, linear structures that tangle into imprecise structures. Chemists have long dreamed of making polymers ...

Template to create superatoms could make for better batteries

June 21, 2018

Virginia Commonwealth University researchers have discovered a novel strategy for creating superatoms—combinations of atoms that can mimic the properties of more than one group of elements of the periodic table. These superatoms ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.