Rare earth magnet recycling is a grind, but new process takes a simpler approach

April 20, 2018 by Laura Millsaps, Ames Laboratory
Plasma torch depositing recycled magnet material. Credit: Ames Laboratory

A new recycling process developed at the U.S. Department of Energy's Critical Materials Institute (CMI) turns discarded hard disk drive (HDD) magnets into new magnet material in a few steps, and tackles both the economic and environmental issues typically associated with mining e-waste for valuable materials.

Ryan Ott, a scientist at Ames Laboratory and a member of the CMI research team, said that with an ever-increasing amount of discarded electronics globally, it made sense to focus on the most ubiquitous source of valuable in that waste stream—hard disk drives, which have a relatively centralized scrap source.

"There are a lot of ways to go about getting the rare-earth elements out of e-waste, and some of them are very effective, but some create unwanted by-products and the recovered elements still need to be incorporated into a new application," said Ott. "Here we have eliminated as many processing steps as we can, and go straight from the discarded magnet to an end product, which is a new magnet."

Scrapped HDD magnets are collected, then any protective coatings are removed. The magnets are crushed into powder, which is then deposited on a substrate using plasma spray to synthesize coatings ½ to 1 mm thick. The properties of the end product are customizable depending on processing controls.

While the new magnetic material cannot retain the exceptional magnetic properties of the original material, it potentially fills market needs for an economical choice where the performance of a high-strength rare-earth magnet is not required, but lower performance magnets like ferrites are not sufficient.

The method is also an efficient way to produce strong magnets for small places, like sleek hand-held electronics.

"This waste reduction aspect of this process is really two-fold; we're not only reusing end-of-life magnets," said Ott. "We are also reducing the amount of manufacturing waste produced in making thin and small geometry magnets out of larger bulk ."

Explore further: New acid-free magnet recycling process

Related Stories

New acid-free magnet recycling process

September 6, 2017

A new rare-earth magnet recycling process developed by researchers at the Critical Materials Institute (CMI) dissolves magnets in an acid-free solution and recovers high purity rare earth elements. For shredded magnet-containing ...

New CMI process recycles magnets from factory floor

June 30, 2015

A new recycling method developed by scientists at the Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from manufacturing ...

Breakthrough made in atomically thin magnets

April 4, 2018

Cornell researchers have become the first to control atomically thin magnets with an electric field, a breakthrough that provides a blueprint for producing exceptionally powerful and efficient data storage in computer chips, ...

Recommended for you

New battery gobbles up carbon dioxide

September 21, 2018

A new type of battery developed by researchers at MIT could be made partly from carbon dioxide captured from power plants. Rather than attempting to convert carbon dioxide to specialized chemicals using metal catalysts, which ...

Scientists solve the golden puzzle of calaverite

September 21, 2018

Scientists from Russia and Germany have shed light on the crystalline structure of calaverite, foretelling the existence of a new gold compound previously unknown to chemists. The results of their study were published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.