Research demonstrates new approach to study properties of nanodroplets

April 30, 2018, University of Arkansas
Computer simulation showing the molecular structure of a nanodroplet of water. Credit: Feng Wang

Researchers have found new methods to measure the internal pressure and surface tension of nano-sized drops of liquid like those involved in cloud formation and airborne pollutants to study how they behave in different environments.  

Understanding the function of these in is relevant to the study of climate change. Similarly, can also come in the form of nanodroplets. Nanosized drops of liquid are also used in labs to act as nanoscale "reactors"—tiny containers to house chemical reactions at high concentration. In order to understand how nanodroplets behave in each of these contexts, a researcher must be able to measure properties such as internal and surface tension.

New research conducted by Feng Wang, U of A associate professor of physical chemistry, along with graduate student Kai-Yang Leong, has found methods to calculate these properties. The research, funded by the National Science Foundation, was published in the Journal of Chemical Physics.

Wang explained that, because nanoscale droplets are highly curved, their surface tension cannot be calculated in the same way as the surface tension of liquid with a flat surface. These are also difficult to study because they evaporate quickly.

"A conclusive understanding regarding the surface tension of nanodroplets is far from being achieved," the researchers said in their paper.

In order to find the , researchers must know the internal pressure of the droplet. Established methods of calculating pressure in liquids use a measurement called virial pressure, which uses force and distance to calculate pressure. These methods work well for large amounts of liquid but not for small droplets, where minor changes in distance have a more pronounced effect.

Wang and Leong used the U of A High Performance Computing Center to develop a new method of calculating the internal pressure of a nanodroplet.

Using a type of computer modeling called , the researchers were able to calculate the internal pressure of nanodroplets by first establishing the relationship between the density and the pressure of the droplets. Since the density of the water could be established, the researchers could then use this as a proxy to calculate the pressure.

"To the best of our knowledge, the use of a proxy to measure pressure has not been done in a simulation," they said in the paper.

Explore further: Voltage-driven liquid metal fractals

More information: Kai-Yang Leong et al. A molecular dynamics investigation of the surface tension of water nanodroplets and a new technique for local pressure determination through density correlation, The Journal of Chemical Physics (2018). DOI: 10.1063/1.5004985

Related Stories

Voltage-driven liquid metal fractals

October 30, 2017

Researchers from North Carolina State University have found that gallium indium (EGaIn), a liquid metal with one of the highest surface tensions, can be induced to spread and form patterns called fractals with the application ...

Researchers identify movement of droplets on soft surfaces

August 5, 2015

Researchers from the University of Twente have succeeded in clearly identifying why droplets on soft, squishy surfaces react differently than on hard surfaces. A water droplet, for example, moves very differently over jelly ...

Engineers use liquid drops to make solids stiffer

December 16, 2014

(—Engineers at Yale University have discovered that the stiffness of liquid drops embedded in solids has something in common with Goldilocks: While large drops of liquids are softer than the solid that surrounds ...

New surface makes oil contamination remove itself

June 17, 2016

Researchers of Aalto University have developed surfaces where oil transports itself to desired directions. Researchers' oleophobic surfaces are microtextured with radial arrays of undercut stripes. When oil drops fall on ...

Low pressure reduces bubble trouble

March 29, 2018

Spray coating and inkjet-based electronics manufacture are among the industrial applications in which liquid droplets are applied to a surface. But minuscule air bubbles that get trapped beneath the droplet as it lands can ...

Recommended for you

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.