Living sensor can potentially prevent environmental disasters from fuel spills

March 18, 2018, American Chemical Society

The Colonial Pipeline, which carries fuel from Texas to New York, ruptured last fall, dumping a quarter-million gallons of gas in rural Alabama. By the time the leak was detected during routine inspection, vapors from released gasoline were so strong they prevented pipeline repair for days. Now, scientists are developing technology that would alert pipeline managers about leaks as soon as failure begins, avoiding the environmental disasters and fuel distribution disruptions resulting from pipeline leaks.

The researchers are presenting their work today at the 255th National Meeting & Exposition of the American Chemical Society (ACS).

"The advantage with our sensor is that it can detect very small leaks, and operators can take quick action to repair them," says Veera Gnaneswar Gude, Ph.D., leader of the project. "We no longer have to wait until the leak is out of hand. Plus if we are able to develop this system on a larger scale, the same unit would be able to treat the waste and to remediate the soil and water that has been contaminated."

Pipelines are currently inspected by a device called a smart pig, an that travels through the pipe detecting cracks or welding defects. Despite regular inspection, leaks still occur. Gude, who is at Mississippi State University, is developing a sensor that would complement this process by providing additional information about the integrity of the pipes. This sensor adheres to the outside of the pipe, and takes advantage of the metabolic process of bacteria to detect gas leaks in real time.

In previous research, Gude studied the use of microorganisms in wastewater treatment, and he has recently turned his focus to building biosensors from similar species. In the current study, he is testing bacteria that will elicit an adequately measurable cathode voltage while also being able to survive in a marine environment for the application of offshore oil spill detection. For this to work, the bacteria have to remain robust through a range of alkalinity, pressure and pH conditions.

One type of bacteria he is testing is referred to as "electrogenic," which means that it releases electrons to its environment through . Gude created an organic sensor composed of an electrogenic anode made up of bacteria that consume carbon-based material (gas or oil) and expel electrons. The electrons then travel across a resistor to a cathode. A different set of bacteria, hungry for electrons, resides at the cathode encouraging electron flow. An increase in the metabolic processes of the anode bacteria will correspond to a voltage increase in the sensor, which could alert a technician to a potential leak.

"The sensor is not difficult to implement," says Gude. "Placing the sensor onto a pipe is not a big challenge. It is a very versatile technique."

Currently, Gude is looking for a medium in which to immobilize the bacteria. He is testing high-porosity plastics and bio-based films that optimize the surface area that the electrogenic bacteria can cover.

Once rugged are identified and immobilized, they can be used as leak detectors in a range of oil transport and drilling applications, including fracking. It is possible that at some point in the future the sensor could be sprayed as a coating on the exterior of pipes insuring that the entire length is continuously monitored.

Explore further: Engineers develop material that can sense fuel leaks and fuel-based explosives

Related Stories

New research to realise the sensor 'pipe dream'

May 4, 2015

Three new research projects funded by Australia's energy pipeline industry have been initiated at Deakin University. The projects aim to develop a world-first pipeline health monitoring system that will be based on a high ...

Microbial fuel cell converts methane to electricity

May 17, 2017

Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere. Now, an international team of researchers has taken the first step in converting methane ...

Pencil test for pipeline cracks

June 8, 2016

It is impossible to see when the "lead" in a pencil cracks within the pencil, but an acoustic sensor can "hear" the change in the way the pencil vibrates. Now, researchers in China have reported in the International Journal ...

Researcher Develops Sensor to Detect E.coli

September 24, 2006

As the Food and Drug Administration takes days to track down the source of the E. coli outbreak, Dr. Raj Mutharasan is optimizing a sensor that can enable growers to do the job themselves in a few minutes.

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

NASA instruments image fireball over Bering Sea

March 22, 2019

On Dec. 18, 2018, a large "fireball—the term used for exceptionally bright meteors that are visible over a wide area—exploded about 16 miles (26 kilometers) above the Bering Sea. The explosion unleashed an estimated 173 ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

chuck_in_st_paul
not rated yet Mar 18, 2018
what a wonderful bit of cross discipline science! While each area concentrates on ever more esoteric knowledge in their field, these cross discipline guys are really turning up the volume on new inventions.

Well done guys!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.