Better than nature: artificial biofilm increases energy production in microbial fuel cells

April 13, 2017, University of Bayreuth
A confocal microscopic image of wet spun microfibres with Shewanella oneidensis bacteria (green: living bacteria; red: dead bacteria). Credit: Patrick Kaiser

Microbial fuel cells exploit the metabolism of bacteria in order to generate electricity. A new type of biofilm developed in Bayreuth could soon make this relatively young technology considerably more effective, more stable, and easier to use. A research team at the University of Bayreuth has succeeded in producing a material that is far better suited for energy production in fuel cells than natural biofilms. The scientists described the advantages of their new findings in the journal Macromolecular Bioscience.

Bacteria in feed on organic substances such as lactic acid. In this context, electrons are continuously released as part of the metabolic process. As soon as these electrons come into contact with the anode of the , they are transferred to the cathode on the opposite side. This creates an electric current. Until now, when generating electricity in this way, the metallic surface of the anode has generally been colonized by bacteria. The bacteria multiply there, eventually creating a natural and transferring electrons to the anode. The newly developed artificial biofilm from Bayreuth has the same effect, but optimizes this type of in several ways.

Bacteria in synthetic nets: more stable than natural biofilms

The material developed by the research group led by Prof. Dr. Ruth Freitag (Process Biotechnology) and Prof. Dr. Andreas Greiner (Macromolecular Chemistry) is a biocomposite: a hydrogel, to be exact. It is a network of tiny polymer fibres containing a single type of bacteria, the metabolisms of which can continue generating power without interruption. However, the amount of power produced is considerably higher: "Our biofilm contains only one type of bacteria, namely Shewanella oneidensis. The electrical performance of a cell with this film is twice as high as when bacteria of this species produce a natural biofilm," explained Patrick Kaiser (M.Sc.), a doctoral researcher in Bayreuth and one of the authors of the recently published study.

There is also a further advantage to this performance enhancement: energy is produced reliably and predictably, since the concentration of bacteria is determined from the outset in the artificial biofilm. In contrast, natural biofilms are released in a way that is difficult to control, making them less stable. The Bayreuth scientists' new biocomposite thus makes fuel considerably easier to use.

The biocomposite was produced on the campus of the University of Bayreuth via the electro-spinning of polymer fibres that combine to form a fleece. "Nowadays, electro-spinning of fleece is a widely used technology. No additional production steps are required to embed the bacteria," added Steffen Reich (M.Sc.), who wrote his doctoral thesis in Bayreuth on the encapsulation of in polymers.

Explore further: Building a better microbial fuel cell—using paper

More information: Patrick Kaiser et al. Electrogenic Single-Species Biocomposites as Anodes for Microbial Fuel Cells, Macromolecular Bioscience (2017). DOI: 10.1002/mabi.201600442

Related Stories

Building a better microbial fuel cell—using paper

February 6, 2017

The concept behind microbial fuel cells, which rely on bacteria to generate an electrical current, is more than a century old. But turning that concept into a usable tool has been a long process. Microbial fuel cells, or ...

Making more efficient fuel cells

September 7, 2009

Bacteria that generate significant amounts of electricity could be used in microbial fuel cells to provide power in remote environments or to convert waste to electricity. Professor Derek Lovley from the University of Massachusetts, ...

Molecular chameleons reveal bacterial biofilms

November 23, 2016

Molecules that change colour can be used to follow in real-time how bacteria form a protective biofilm around themselves. This new method, which has been developed in collaboration between researchers at Linköping University ...

Oxygen can wake up dormant bacteria for antibiotic attacks

December 8, 2016

Bacterial resistance does not come just through adaptation to antibiotics, sometimes the bacteria simply go to sleep. An international team of researchers is looking at compounds that attack bacteria's ability to go dormant ...

Genes that make bacteria make up their minds

March 30, 2009

Bacteria are single cell organisms with no nervous system or brain. So how do individual bacterial cells living as part of a complex community called a biofilm "decide" between different physiological processes (such as movement ...

Recommended for you

What can snakes teach us about engineering friction?

May 21, 2018

If you want to know how to make a sneaker with better traction, just ask a snake. That's the theory driving the research of Hisham Abdel-Aal, Ph.D., an associate teaching professor from Drexel University's College of Engineering ...

Flexible, highly efficient multimodal energy harvesting

May 21, 2018

A 10-fold increase in the ability to harvest mechanical and thermal energy over standard piezoelectric composites may be possible using a piezoelectric ceramic foam supported by a flexible polymer support, according to Penn ...

Self-assembling 3-D battery would charge in seconds

May 17, 2018

The world is a big place, but it's gotten smaller with the advent of technologies that put people from across the globe in the palm of one's hand. And as the world has shrunk, it has also demanded that things happen ever ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.