Molecular prison forces diatomic inmates to cell floor

March 27, 2018, Carnegie Institution for Science
Is it a UFO? No. It's the probability distribution of a rotating hydrogen molecule trapped inside an organic clathrate cage. Credit: Tim Strobel.

A team of scientists including Carnegie's Tim Strobel and Venkata Bhadram now report unexpected quantum behavior of hydrogen molecules, H2, trapped within tiny cages made of organic molecules, demonstrating that the structure of the cage influences the behavior of the molecule imprisoned inside it.

A detailed understanding of the physics of individual atoms interacting with each other at the microscopic level can lead to the discovery of novel emergent phenomena, help guide the synthesis of new materials, and even aid future drug development.

But at the atomic scale, the classical, so-called Newtonian, rules of physics you learned in school don't apply. In the arena of the ultra-small, different rules, governed by quantum mechanics, are needed to understand interactions between atoms where energy is discrete, or non-continuous, and where position is inherently uncertain.

The research team—including Anibal Ramirez-Cuesta, Luke Daemen, and Yongqiang Cheng of Oak Ridge National Laboratory, as well as Timothy Jenkins and Craig Brown of the National Institute of Standards and Technology-used spectroscopic tools, including the state-of-the-art inelastic neutron spectrometer called VISION at the Spallation Neutron Source, to examine the atomic-level dynamics of a special kind of molecular structure called a clathrate.

Clathrates consist of a lattice structure that forms cages, trapping other types of molecules inside, like a molecular-scale prison. The clathrate the team studied, called β-hydroquinone, consisted of cages made from that trap H2. Only a single H2 molecule is present within each cage, so the quantum of the isolated molecules could be examined in detail.

"Practical examples of isolated quantum-influenced particles that are trapped inside well-defined spaces provide the opportunity to probe dynamics under conditions that are approaching simulation-like perfection," Strobel explained.

The research team was able to observe how the hydrogen molecule rattled and rotated within the cage. Surprisingly, the observed rotational motion was unlike that of H2 trapped in related systems in which molecules can rotate almost freely in all directions.

"The behavior we observed here is similar to the behavior of H2 that are adhering to a metal surface," Strobel explained. "It is the first time this behavior, known by physicists as a two-dimensional hindered rotor, has been observed for hydrogen trapped within a molecular clathrate."

It turns out that the local structure of the clathrate cage greatly influences the dynamics of H2, causing a preference for rotation in two dimensions despite the fact that there are no chemical bonds involved. In addition to the fundamental insights, this discovery could have important implications for the design of that can trap H2 for energy and transportation applications.

Explore further: Neutrons reveal fast methane translational diffusion at the interface of two clathrate structures

More information: Timothy A. Strobel et al. Quantum Dynamics of H2 Trapped within Organic Clathrate Cages, Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.120.120402

Related Stories

Volatility surprises arise in removing excess hydrogen

November 15, 2017

Excess hydrogen can cause problems in a variety of industries. It can corrode semiconductors, electronics, and nuclear fuel sitting in storage. It also poses an explosion hazard. To remove this extra hydrogen, chemists can ...

Recommended for you

Classic double-slit experiment in a new light

January 18, 2019

An international research team led by physicists from the University of Cologne has implemented a new variant of the basic double-slit experiment using resonant inelastic X-ray scattering at the European Synchrotron ESRF ...

New thermoelectric material delivers record performance

January 17, 2019

Taking advantage of recent advances in using theoretical calculations to predict the properties of new materials, researchers reported Thursday the discovery of a new class of half-Heusler thermoelectric compounds, including ...

Zirconium isotope a master at neutron capture

January 17, 2019

The probability that a nucleus will absorb a neutron is important to many areas of nuclear science, including the production of elements in the cosmos, reactor performance, nuclear medicine and defense applications.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.