Rare 'baby rattle' molecules reveal new quantum properties of H2O and H2

Neutron scattering experiments at the ILL have revealed the existence of quantum selection rules in molecules, the first experimental confirmation of its kind. Small molecules such as water and hydrogen were inserted into C-60 buckyballs to form rare compounds ideal for testing the predictions of quantum theory. Similar confinement techniques could open the door to new insights about the quantum properties of molecules by providing a unique testing ground for quantum theory.

The experiments were carried out on endofullerenes, of C60 into which smaller molecules of Hydrogen (H2) had been inserted. The results, published in Physical Review Letters, represent the first known example of a quantum selection rule found in a molecule.

Similar techniques were also used by the same team to uncover an exciting new symmetry-breaking interaction of with C60 cages, published last month in Physical Chemistry Chemical Physics.

The use of fullerenes such as C60 to trap smaller molecules, using cutting-edge molecular surgery techniques, was pioneered over the last decade. A complex series of chemical reactions is needed to open an orifice in the C60 cage which allows the smaller molecule to be inserted at high pressures to form a sealed structure that resembles a baby's rattle. The resulting complex provides a 'nanolaboratory' environment ideal for examining the trapped molecule via spectroscopic techniques.

By exposing the samples to a continuous beam of neutrons, the energy levels of the molecular complex can be accurately determined. The use of neutrons is ideal for experiments of this kind owing to their fundamental magnetic spin, which allows them to drive a wider range of transitions than would be possible with photons.

The neutron scattering experiments conducted with a mixture of ortho and para hydrogen showed that a number of forbidden transitions from the para-H2 ground state were systematically absent from the resultant spectra. This confirmed the existence of a molecular selection rule, a discovery which runs counter to the widely held view that such molecular compounds are not subject to any selection rules.

Prof Mark Johnson, who contributed to the experimental work undertaken at ILL, said "This is a fantastic example of an international collaboration to study a unique sample of which only tens of milligrams exist worldwide. The Japanese first learned how to open up C60, and the collaboration with researchers in New York gave an improved understanding of these quantum systems. Tiny quantities of the sample were exposed to the world's highest neutron flux at the ILL in experiments that would not have been possible some years ago."

He added "The experiments provide a way of isolating hydrogen in what is effectively a spherical environment, whose symmetry makes the theoretical calculations a great deal easier. Such well-defined systems, which have not existed to date, provide an excellent test bed for ."

Similar experiments conducted with forms of H2O known as ortho- and para- water also revealed a previously undiscovered splitting of the ortho-H2O ground state, pointing to a symmetry-breaking interaction which arises when the molecules are isolated in the C60 cages. Whether the molecular confinement or a set of longer range interactions is responsible for the observed symmetry breaking is a topic of considerable interest and one worthy of further research.

Explore further

Separation of para and ortho water

Citation: Rare 'baby rattle' molecules reveal new quantum properties of H2O and H2 (2014, October 10) retrieved 26 June 2019 from https://phys.org/news/2014-10-rare-baby-rattle-molecules-reveal.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments

Oct 11, 2014
I do have a strong "feeling" that H2O@C60, H2@C60, ... will leed to coldfusion in the future.

*techniques described in this article
*nuclear magnetic resonance
*pseudo cathode techniques (constructing nanoscale fusor applications)

Oct 11, 2014
The third E-Cat independent (multiple university) test came back and it is highly positive and fully fleshed out and covers all potential complaints and whines on avenues for fraud and error.

The tests illustrate a highly understressed system which was purposely running at low efficiency but still returning a COP of 3.8.

Explicit details were given so that experimenters can now replicate on their own and move this thing forward.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more