Compounds could be basis for devices that turn waste heat into electricity

March 6, 2017
Credit: CC0 Public Domain

Cage-like compounds called clathrates could be used for harvesting waste heat and turning it into electricity. UC Davis chemists just discovered a whole new class of clathrates, potentially opening new ways to make and apply these materials.

A clathrate is basically a cage of atoms with another atom trapped inside, said Kirill Kovnir, assistant professor of chemistry at UC Davis, who led the work, published recently in the journal Angewandte Chemie. Because the cage is relatively large compared to the atom, the trapped atom can rattle around inside, and that means that clathrates conduct very poorly, he said.

What they can do, though, is convert heat into electricity.

"Our energy sources waste about 60 percent or more as heat," Kovnir said. For example, a car engine generates lots of heat, almost none of which is usefully captured.

Thermoelectric devices that can convert heat to electricity have been used for example to power Mars rovers, where a radioactive source gives off heat that is converted to electricity to power the rover. Widely available thermoelectrics could be used for applications from powering a watch with body heat to making vehicles more efficient.

Clathrates of Metals and Other Atoms

Clathrates have been around for a long time—as a class of materials, they were discovered in 1810 by the chemist Humphrey Davy. Clathrate structures based on water under pressure trap reserves of methane in the deep ocean.

Kovnir, however, is more interested in clathrates built of atoms such as copper, zinc and phosphorous and barium that are stable at room temperatures.

To date, all clathrates described have been based on a tetrahedral structure: each atom in the cage is bonded with four other atoms. More than 200 years after they were discovered, Kovnir's team has produced and described stable with atoms with five, six or more bonds.

"It was assumed that that framework had to be tetrahedrally coordinated," Kovnir said. "This is the first case where they don't have to be, and it suggests many more are possible."

The chemists were actually trying to probe the stability of the clathrate structure when they discovered the new compounds. To make four bonds, each atom needs four electrons available. By adding atoms with more electrons (such as zinc) Kovnir was expecting to be able to break the clathrate structure. Instead, they found they could produce entirely new, stable structures, including one with a cage of zinc, copper and phosphorous trapping a barium atom. The new structure was featured on the cover of the journal Angewandte Chemie, with an accompanying research highlight.

Next steps are to optimize the thermoelectric properties of the new materials and see if they can tweak them for best performance, Kovnir said.

Explore further: Creating electricity with caged atoms

More information: Juli-Anna Dolyniuk et al, Breaking the Tetra-Coordinated Framework Rule: New Clathrate BaP(=Cu/Zn), Angewandte Chemie International Edition (2017). DOI: 10.1002/anie.201611510

Related Stories

Creating electricity with caged atoms

September 22, 2013

Clathrates are crystals consisting of tiny cages in which single atoms can be enclosed. These atoms significantly alter the material properties of the crystal. By trapping cerium atoms in a clathrate, scientists at the Vienna ...

Most complex nanoparticle crystal ever made by design

March 2, 2017

The most complex crystal designed and built from nanoparticles has been reported by researchers at Northwestern University and confirmed by researchers at the University of Michigan. The work demonstrates that some of nature's ...

Team identifies clathrate ices in comet 67P

April 8, 2016

For decades, scientists have agreed that comets are mostly water ice, but what kind of ice—amorphous or crystalline—is still up for debate. Looking at data obtained by ESA's Rosetta spacecraft in the atmosphere, or coma, ...

Recommended for you

Chemists create 3-D printed graphene foam

June 21, 2017

Nanotechnologists from Rice University and China's Tianjin University have used 3-D laser printing to fabricate centimeter-sized objects of atomically thin graphene.

Plant inspiration could lead to flexible electronics

June 21, 2017

Versatile, light-weight materials that are both strong and resilient are crucial for the development of flexible electronics, such as bendable tablets and wearable sensors. Aerogels are good candidates for such applications, ...

Neuron transistor behaves like a brain neuron

June 20, 2017

(Phys.org)—Researchers have built a new type of "neuron transistor"—a transistor that behaves like a neuron in a living brain. These devices could form the building blocks of neuromorphic hardware that may offer unprecedented ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.