Genetic switch activates transformation of stem cells into heart muscle cells

March 23, 2018, Agency for Science, Technology and Research (A*STAR), Singapore

The discovery of a genetic switch that triggers stem cells to turn into heart cells is a major step in finding treatment for damaged hearts.

Researchers from A*STAR and their colleagues in India have been investigating the molecular and genetic processes by which human embryonic differentiate into the body's many types of cells—in particular, cardiomyocytes, or .

"The effort is underway globally to find ways to differentiate these stem cells into beating functional heart muscle cells so that they can be used for cell-based therapies to treat structural abnormalities," says Prabha Sampath, from the A*STAR Institute of Medical Biology.

In this study, researchers used a method called transcriptome profiling, which examines the activity of a wide range of genes in a cell, to determine which are more active when human differentiate into .

Two particular genes, NR2F2 and EZH2, show increased expression during the differentiation process. The proteins that these genes code for suppress the activity of another gene called OCT-4, which is responsible for keeping stem cells in their undifferentiated state.

"NR2F2 recruits EZH2 to gene OCT-4, and potentially suppresses its expression, propelling the cells towards differentiation," Sampath says. "With the down-regulation of this gene, the cells start differentiating into cardiomyocytes."

The NR2F2 protein has not previously been linked to cardiac differentiation, but mutations in the NR2F2 gene have been known to cause the development of a type of congenital heart defect. "While it's unlikely to be the only mechanism involved in the differentiation of stem cells into , it's an important step in the process", says Mohsin Bin Bashir, also from the Institute of Medical Biology. "If we can understand how a stem cell becomes a cardiomyocyte, we have more chance of creating these cells in a controlled fashion."

That process could also be used in reprogramming , where are taken from a patient, reprogrammed back into their stem cell state, then differentiated into whatever cell type is needed for treatment.

"You can convert them into cardiomyocytes and put them back into the patient, and one of the advantages with that [process is that] there would be no immune rejection because these cells come from the patient themselves," Bashir says.

Explore further: Finding a key to unlock blocked differentiation in microRNA-deficient embryonic stem cells

More information: Varsha Pursani et al. Genetic and Epigenetic Profiling Reveals EZH2-mediated Down Regulation of OCT-4 Involves NR2F2 during Cardiac Differentiation of Human Embryonic Stem Cells, Scientific Reports (2017). DOI: 10.1038/s41598-017-13442-9

Related Stories

Getting straight to the heart of the matter in stem cells

December 21, 2017

The process by which embryonic stem cells develop into heart cells is a complex process involving the precisely timed activation of several molecular pathways and at least 200 genes. Now, Salk Institute scientists have found ...

Controlling gene activity in human development

December 6, 2016

Researchers at the Babraham Institute have revealed a new understanding of the molecular switches that control gene activity in human embryonic stem cells. This insight provides new avenues for improving the efficiency of ...

Gene "bookmarking" regulates the fate of stem cells

December 7, 2016

A protein that stays attached on chromosomes during cell division plays a critical role in determining the type of cell that stem cells can become. The discovery, made by EPFL scientists, has significant implications for ...

Gene key for chemically reprogramming human stem cells

January 26, 2017

Scientists have discovered the gene essential for chemically reprogramming human amniotic stem cells into a more versatile state similar to embryonic stem cells, in research led by UCL and Heinrich Heine University.

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.