Supermassive black hole model predicts characteristic light signals at cusp of collision

February 14, 2018 by Susan Gawlowicz, Rochester Institute of Technology
Supermassive black hole model predicts characteristic light signals at cusp of collision
Two supermassive black holes at the center of a large gas disk are on a collision course in a time sequence simulated by RIT scientists. An alternating flow of gas fills and depletes mini disks feeding the black holes, shown above. Characteristic light signals emitted in the gas could mark the location of the invisible masses. (Note: The dot at the center of the image is not part of the simulation.) Credit: RIT Center for Computational Relativity and Gravitation

A new simulation of supermassive black holes—the behemoths at the centers of galaxies—uses a realistic scenario to predict the light signals emitted in the surrounding gas before the masses collide, said Rochester Institute of Technology researchers.

The RIT-led study represents the first step toward predicting the approaching merger of supermassive black holes using the two channels of information now available to scientists—the electromagnetic and the gravitational wave spectra—known as multimessenger astrophysics. The findings appear in the paper "Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger," published in the Astrophysical Journal Letters.

"We've performed the first simulation in which an accretion disk around a binary black hole feeds individual accretion disks, or mini-disks, around each black hole in general relativity and magnetohydrodynamics," said Dennis Bowen, lead author and postdoctoral researcher at RIT's Center for Computational Relativity and Gravitation.

Unlike their less massive cousins, first detected in 2016, supermassive black holes are fed by gas disks that surround them like doughnuts. The strong gravitational pull of the black holes that inspiral toward one another heats and disrupts the flow of gas from disk to black hole and emits periodic signals in the visible to X-ray portions of the electromagnetic spectrum.

"We have not yet seen two supermassive black holes get this close," Bowen said. "It provides the first hints of what these mergers will look like in a telescope. The filling and refilling of mini-disks affect the light signatures."

Credit: RIT Center for Computational Relativity and Gravitation

The simulation models supermassive black holes in a binary pair, each surrounded by its own gas disks. A much larger gas disk encircles the black holes and disproportionately feeds one mini-disk over another, leading to the filling-and-refilling cycle described in the paper.

"The evolution is long enough to study what the real science outcome would look like," said Manuela Campanelli, director of the Center for Computational Relativity and Gravitation and a co-author on the paper.

Binary supermassive black holes emit at lower frequencies than stellar-mass black holes. The ground-based Laser Interferometer Gravitational-wave Observatory, in 2016, detected the first gravitational waves from stellar mass black holes collisions with an instrument tuned to higher frequencies. LIGO's sensitivity is unable to observe the gravitational wave signals produced by coalescence.

Supermassive black hole model predicts characteristic light signals at cusp of collision
Magnetic field lines emanate from a pair of supermassive black holes nearing merger within a large gas disk in a simulation by RIT scientists. Periodic light signals in the gas disk could someday help scientists locate supermassive binary black holes. Credit: RIT Center for Computational Relativity and Gravitation

The launch of the space-based Laser Interferometer Space Antenna, or LISA, slated for the 2030s, will detect gravitational waves from colliding supermassive black holes in the cosmos. When operational in the 2020s, the ground-based Large Synoptic Survey Telescope, or LSST, under construction in Cerro Pachón, Chile, will produce the widest, deepest survey of light emissions in the universe. The pattern of signals predicted in the RIT study could guide scientists to orbiting pairs of supermassive black holes.

"In the era of multimessenger astrophysics, simulations such as this are necessary to make direct predictions of electromagnetic signals that will accompany gravitational waves," Bowen said. "This is the first step toward the ultimate goal of simulations capable of making direct predictions of the electromagnetic signal from approaching merger."

Bowen and his collaborators combined simulations from RIT's Black Hole Lab computer clusters and the Blue Waters supercomputer at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, one of the largest supercomputers in the United States.

Astrophysicists from RIT, Johns Hopkins University and NASA Goddard Space Flight Center collaborated on the project. The publication is based on Bowen's Ph.D. dissertation at RIT and completes research begun by a co-author, Scott Noble, a former RIT post-doctoral researcher, now at NASA Goddard. Their research is part of a collaborative National Science Foundation-funded project led by Campanelli. Co-authors include Vassilios Mewes, RIT postdoctoral researcher; Miguel Zilhao, former RIT post-doctoral researcher, now at Universidade de Lisboa, in Portugal; and Julian Krolik, professor of physics and astronomy at Johns Hopkins University.

In an upcoming paper, the authors will explore further the correlation between gas flowing in and out of the accretion disks and fluctuating light emissions. They will present predictions of light signatures scientists can expect to see with advanced telescopes when looking for supermassive black holes approaching merger.

Explore further: Supermassive black holes can feast on one star per year

More information: Dennis B. Bowen et al. Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger, The Astrophysical Journal (2018). DOI: 10.3847/2041-8213/aaa756

Related Stories

Supermassive black holes can feast on one star per year

February 1, 2018

CU Boulder researchers have discovered a mechanism that explains the persistence of asymmetrical stellar clusters surrounding supermassive black holes in some galaxies and suggests that during post-galactic merger periods, ...

Black hole spin cranks-up radio volume

January 12, 2018

Statistical analysis of supermassive black holes suggests that the spin of the black hole may play a role in the generation of powerful high-speed jets blasting radio waves and other radiation across the universe.

Black hole pair born inside a dying star?

December 19, 2017

Far from earth, two black holes orbit around each other, propagating waves that bend time and space. The existence of such waves—gravitational waves—was first predicted by Albert Einstein over a century ago on the basis ...

Recommended for you

Magnetized inflow accreting to center of Milky Way galaxy

August 17, 2018

Are magnetic fields an important guiding force for gas accreting to a supermassive black hole (SMBH) like the one that our Milky Way galaxy hosts? The role of magnetic fields in gas accretion is little understood, and trying ...

First science with ALMA's highest-frequency capabilities

August 17, 2018

The ALMA telescope in Chile has transformed how we see the universe, showing us otherwise invisible parts of the cosmos. This array of incredibly precise antennas studies a comparatively high-frequency sliver of radio light: ...

Another way for stellar-mass black holes to grow larger

August 17, 2018

A trio of researchers with The University of Hong Kong, Academia Sinica Institute of Astronomy and Astrophysics in Taiwan and Northwestern University in the U.S., has come up with an alternative theory to explain how some ...

Six things about Opportunity's recovery efforts

August 17, 2018

NASA's Opportunity rover has been silent since June 10, when a planet-encircling dust storm cut off solar power for the nearly-15-year-old rover. Now that scientists think the global dust storm is "decaying"—meaning more ...

Sprawling galaxy cluster found hiding in plain sight

August 16, 2018

MIT scientists have uncovered a sprawling new galaxy cluster hiding in plain sight. The cluster, which sits a mere 2.4 billion light years from Earth, is made up of hundreds of individual galaxies and surrounds an extremely ...

Hubble paints picture of the evolving universe

August 16, 2018

Astronomers using the ultraviolet vision of NASA's Hubble Space Telescope have captured one of the largest panoramic views of the fire and fury of star birth in the distant universe. The field features approximately 15,000 ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (4) Feb 14, 2018
A new simulation of supermassive black holes—the behemoths at the centers of galaxies—uses a realistic scenario to predict the light signals emitted in the surrounding gas before the masses collide,

The "realistic scenario" is of course the glint in the eye of the leprechaun from the glare from his rainbow.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.