Black hole pair born inside a dying star?

December 19, 2017, Kyoto University
Snapshot of gravitational waves propagating from binary black holes merging inside of a star. Credit: Kyoto University, Joseph M. Fedrow

Far from earth, two black holes orbit around each other, propagating waves that bend time and space. The existence of such waves—gravitational waves—was first predicted by Albert Einstein over a century ago on the basis of his Theory of General Relativity. And as always, Einstein was right.

But it took until 2015 for the Laser Interferometer Gravitational-Wave Observatory to detect gravitational waves for the first time, findings that earned the LIGO team the Nobel Prize in physics two years later. In addition to the shockwave this discovery sent across the scientific community, it also gave researchers the new field of gravitational wave astronomy. But as with many discoveries, for every mystery solved, new questions have arisen.

One such new puzzle: how did those gravitational wave-inducing originate? Writing in the journal Physical Review Letters, Joseph Fedrow of Kyoto University's Yukawa Institute for Theoretical Physics—in collaboration with the International Research Unit for Advanced Future Studies—has determined what gravitational waves might look like if two black holes formed inside a massive, collapsing star.

"Although gravitational waves have allowed us to directly detect black holes for the first time, we still don't know the exact origins of these particular black holes," explains Fedrow. "One idea is that these black holes formed during dynamical fragmentation of the inner core of a dying star undergoing ." This, according to Fedrow, could have resulted in two of the fragments becoming black holes and orbiting around each other in the remains of the stellar environment.

To test this proposal, the team used supercomputers and the tools of numerical relativity to create a model of two black holes in such surroundings. And after many long hours of computation, the output was compared against LIGO's observational data. "Our results were measurably different, showing that if black holes formed in a high-density, stellar environment, then the time it takes for them to merge shortens. If the density is lowered to levels more similar to vacuum, then the resulting match those of the event observed."

In addition to shedding light on the dynamics of , these results reaffirm that the first waves detected by LIGO came from black holes in an empty region of space. "In this exciting, new era of gravitational wave astronomy, we don't know what we'll find, or where it will lead us," concludes Fedrow. "But our work here will help to illuminate untrodden paths, and shine a light upon the darkest of objects in the universe."

Explore further: Scientists 'excited' by observations suggesting formation scenarios

More information: Joseph M. Fedrow et al, Gravitational Waves from Binary Black Hole Mergers inside Stars, Physical Review Letters (2017). DOI: 10.1103/PhysRevLett.119.171103

Related Stories

Gravitational waves: Why the fuss?

October 16, 2017

Great excitement rippled through the physics world Monday at news of the first-ever detection of two ultra-dense neutron stars converging in a violent smashup.

Recommended for you

Researchers investigate the peculiar radio source IC 1531

October 17, 2018

An international team of researchers has investigated a peculiar extragalactic radio source known as IC 1531. The new study analyzes the nature of IC 1531's high-energy emission, suggesting that the source is a radio galaxy. ...

Astronomers find a cosmic Titan in the early universe

October 17, 2018

An international team of astronomers has discovered a titanic structure in the early Universe, just two billion years after the Big Bang. This galaxy proto-supercluster, nicknamed Hyperion, is the largest and most massive ...

Magnetic fields may be the key to black hole activity

October 17, 2018

Collimated jets provide astronomers with some of the most powerful evidence that a supermassive black hole lurks in the heart of most galaxies. Some of these black holes appear to be active, gobbling up material from their ...

Double dust ring test could spot migrating planets

October 17, 2018

New research by a team led by an astrophysicist at the University of Warwick has a way of finally telling whether newly forming planets are migrating within the disc of dust and gas that typically surrounds stars or whether ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

milnik
1 / 5 (3) Dec 20, 2017
Again ignorance of the structure of the universe !!
The substance is formed from the substance Aether, which was rejected by science, because this is a big obstacle for inventing the many misconceptions that brought them great wages. The basic and first variant of the matter are electrons and positrons "packed" into the form of gluon, and quarks, from which a quark gluon plasma is formed (MAGNETAR's celestial body).
From this formation, due to the process in the chain of formation of other celestial bodies, there is a superficial expansion of the magnetists, when the Gamma Ray Burst is emitted, which are the quasars, behind them the pulsars (can also be dual stars), only after the formation of neutron stars, and the supernova which, when exploded, follows the chain of the formation of celestial bodies (sun, planets, and the like). What they discovered can be one type of GRB.
Benni
1.7 / 5 (6) Dec 20, 2017
........and they know all this must be factual because they have a drawing created by a well known artist, WhyGuy who used two blowtorches to simulate two different stellar bodies of mass.
Da Schneib
3.3 / 5 (3) Dec 20, 2017
@Lenni, you already admitted black holes exist.

Maybe you forgot.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.