Researchers raise a 170-million-year question over mysterious moss gene

February 12, 2018, Dartmouth College
This fluorescence microscope image shows moss cell undergoing cell division. Yellow color shows the co-location of For1F and exocytosis machinery while building the new cell wall. Credit: Bezanilla et al. (2018) from the Journal of Cell Biology

Researchers have identified a fused gene in moss that provides insight into how cells build their external walls. The same discovery raises questions about the one-of-a-kind gene that features two distinct proteins that participate in two distinct functions.

The research team identified the , known as For1F, while studying exocytosis. Exocytosis is the process by which secrete packets of protein and carbohydrates outside their membranes to support extracellular processes like the construction of cell walls.

The gene discovered in the research couples the exocytosis-regulating protein Sec10 with formin, a protein that regulates the remodeling of the critical to forming cell shapes.

The new study also shows that the occurred early in moss evolution and has been retained for more than 170 million years.

"We were surprised to find this fused gene in the moss genome," said Magdalena Bezanilla, the Ernest Everett Just 1907 Professor of Biology at Dartmouth College. "Through our research, we know that the analysis is correct, now it will be interesting to explore the advantage of this coupling of proteins."

Once For1F was observed, Bezanilla and her team set out to determine how unique this particular conjoined arrangement is. By consulting the database of the 1000 Genomes Project, the researchers found that the fused gene was evident in many diverse species of mosses, but not in other plants.

In all other plant and , Sec10 and formin are located independently. But, for some reason, the are fused in mosses. This unique combination of the genes demonstrates that there is a connection between exocytosis and the remodeling of the cell's internal skeleton, but what that connection is remains unclear.

Further complicating the research, the team also found that the genes did not have to be joined to do their jobs.

According to the paper: "Although not essential, the fusion may have had selective advantages and provides a unique opportunity to probe actin regulation of exocytosis."

"We know that this fusion occurred early in moss evolution and that it has been retained for millions of years," said Bezanilla. "All indications are that there should be some value to this arrangement, but why they are fused in mosses is a mystery."

Bezanilla's research focuses on how single cells and their neighbors work together in to construct cell walls over long periods of time. To do so, the team focuses on the molecules that drive the process.

"Moss is the perfect plant to study," said Bezanilla, "it's a great system with cells that are observable under the microscope and with a genome that we can manipulate."

The research appears in the Journal of Cell Biology.

Explore further: Unlocking long-hidden mechanisms of plant cell division

More information: Peter A.C. van Gisbergen et al, An ancient Sec10–formin fusion provides insights into actin-mediated regulation of exocytosis, The Journal of Cell Biology (2018). DOI: 10.1083/jcb.201705084

Related Stories

Unlocking long-hidden mechanisms of plant cell division

September 25, 2014

Along with copying and splitting DNA during division, cells must have a way to break safely into two viable daughter cells, a process called cytokinesis. But the molecular basis of how plant cells accomplish this without ...

The origin of flower-making genes

January 11, 2018

Flowering plants have evolved from plants without flowers. It is known that the function of several genes, called MADS-box genes, creates shapes peculiar to flowers such as stamens, pistils and petals. Plants that do not ...

Biologists Unlock Secrets of Plants' Growing Tips

August 25, 2009

(PhysOrg.com) -- Biologist Magdalena Bezanilla and colleagues at the University of Massachusetts Amherst have used a technique they call multi-gene silencing to, for the first time, simultaneously silence nine genes in a ...

Cardiomyocytes fuse when the heart grows and regenerates

February 9, 2018

Cardiomyocytes fuse during cardiac development and regeneration. A scientist of the German Centre for Cardiovascular Research (DZHK) discovered these previously unknown processes with the aid of genetically modified zebrafish ...

Clean and green—a moss that removes lead from water

January 17, 2018

Researchers at the RIKEN Center for Sustainable Resource Science (CSRS) in Japan have demonstrated that that moss can be a green alternative for decontaminating polluted water and soil. Published in PLOS ONE, the study shows ...

Recommended for you

Love vine sucks life from wasps, leaving only mummies

August 20, 2018

Early this spring, Rice University evolutionary biologist Scott Egan stood in a patch of live oak scrub habitat in South Florida and scanned the trees for something he'd never seen outside his lab—a wispy, orange vine twining ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.