Iron-corroding bacteria shown to possess enzymes enabling them to extract electrons from extracellular solids

February 23, 2018, National Institute for Materials Science
Figure: Transmission electron mircroscopic image of outer-membrane Cytochromes under the electron source deficiency. Outer membrane (OM) Cytochromes were stained on the cell surface and nanowires. Credit: National Institute for Materials Science (NIMS)

A research team led by NIMS and RIKEN has discovered that sulfate-reducing bacteria responsible for anaerobic iron corrosion in petroleum pipelines, etc. possess a group of cell surface enzymes which enable them to directly extract electrons from extracellular solids. Current anticorrosion methods involve the use of antibacterial agents which kill a broad spectrum of bacteria. Their finding may facilitate the development of more efficient and environmental-friendly anti-biocorrosion methods; for example, the formulation of chemicals capable of effectively inhibiting the bacterial enzymes identified in this research.

Anaerobic corrosion in petroleum pipelines cause severe industrial failures, such as oil leakage. It is therefore important to identify the causes of anaerobic corrosion and efficiently prevent them. Sulfate-reducing ―which produce corrosive hydrogen sulfide by oxidizing soluble electron donors such as organics and hydrogen―have been considered as the cause of anaerobic corrosion. However, it remained unknown why corrosion continue proceeding even after iron surfaces were covered with the built-up iron sulfide crusts which protect iron surface from hydrogen sulfide. In 2004, several sulfate-reducing bacteria were isolated with iron as the sole energy source, and hypothesized to be capable of direct electron extraction from iron through electrically conductive of iron sulfide crusts, causing the persistent anaerobic corrosion. However, electron uptake agents such as surface redox enzymes have not been identified in these bacteria, leaving how they extract electrons from solids unknown,.

The research team carefully analyzed the cell membranes of a corrosive sulfate-reducing bacterium which grows with metal iron as the sole electron source, and discovered a group of membrane enzymes (i.e., outer membrane [OM] cytochromes, which are shown in the photo as the dark stains on the cell surface and nanowires). The team confirmed that electrons were removed from an indium-tin doped oxide electrode only when these enzymes were expressed. These results provide strong evidence supporting that this sulfate reducing bacterium can accelerate iron by direct electron uptake from iron. In addition, the team searched the ubiquity of the newly discovered enzymes in the protein databases and found that the amino acid sequences were widely conserved by various sulfur-metabolizing bacteria inhabiting deep-sea sediments, and distinct from those previously identified in iron-reducing bacteria, therefore likely formed a new clade of outer membrane cytochromes.

In future studies, the team plans to develop anti-biocorrosion techniques capable of selectively and efficiently deactivating corrosive sulfate-reducing bacteria at low costs in an environmental-friendly manner by designing chemicals which inhibit the electron uptake of the identifed membrane enzymes. The results of this research also indicated the first time that bacteria inhabiting deep-sea sediment―a largely unknown ecosystem―may extract electrons directly from solid matters. These results may facilitate the development of techniques to culture unknown bacteria.

Explore further: Study reveals new insights into sulfate-reducing bacteria

More information: Xiao Deng et al. Multi-heme cytochromes provide a pathway for survival in energy-limited environments, Science Advances (2018). DOI: 10.1126/sciadv.aao5682

Related Stories

Study reveals new insights into sulfate-reducing bacteria

March 20, 2014

(Phys.org) —Sulfate-reducing bacteria are common in oxygen-deprived habitats, and they can have harmful industrial and health effects as well as beneficial environmental effects. This study examines the biochemical pathways ...

Progress Toward a Biological Fuel Cell?

December 30, 2008

(PhysOrg.com) -- Biological fuel cells use enzymes or whole microorganisms as biocatalysts for the direct conversion of chemical energy to electrical energy. One type of microbial fuel cell uses anodes (positive electrodes) ...

Microbes corrode steel in ships, marine infrastructure

September 19, 2016

Rust is the bane of steel, whether on cars, on ships and boats, or as part of marine infrastructure. Now, contrary to previous thinking, it turns out that the ocean-dwelling, steel-corroding species, Mariprofundus sp. DIS-1, ...

Recommended for you

Plug-and-play technology automates chemical synthesis

September 20, 2018

Designing a new chemical synthesis can be a laborious process with a fair amount of drudgery involved—mixing chemicals, measuring temperatures, analyzing the results, then starting over again if it doesn't work out.

Commercially relevant bismuth-based thin film processing

September 20, 2018

Developing materials suitable for use in optoelectronic devices is currently a very active area of research. The search for materials for use in photoelectric conversion elements has to be carried out in parallel with developing ...

A game of pool in the live cell

September 20, 2018

Cells need to react to environmental changes and maintain a balanced system of signaling cascades within the cell. Proteins outside of the cell, on the cellular surface, inside the cellular membrane, and within the cell orchestrate ...

Nucleation a boon to sustainable nanomanufacturing

September 19, 2018

Calcium carbonate is found nearly everywhere, in sidewalk cement, wall paint, antacid tablets and deep underground. Engineers at Washington University in St. Louis have used a unique set of state-of-the-art imaging techniques ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.