Surprising discovery could change the way industry uses nickel

Nickel is one of the most abundant elements on earth. It is hard, yet malleable, magnetic at room temperature, and a relatively good conductor of electricity and heat. Most notably, nickel is highly corrosion resistant, which ...

Curbing the flammability of epoxy resin

In a paper to be published in a forthcoming issue of Nano, a team of researchers from Henan University have investigated the flame retardant performance of epoxy resin using a boron nitride nanosheet decorated with cobalt ...

Material for new-generation atomic reactors developed

Materials scientists from the National University of Science and Technology "MISIS" (NUST MISIS) developed a unique sandwich steel-vanadium-steel material that is able to withstand temperatures of up to 700°C, hard radiation ...

Nano-sized diamond will improve materials for maritime transport

An experiment on the introduction of nanoscale diamond into an aluminum melt using ultrasonic treatment at the Brunel University (London, United Kingdom) has been completed. The result will be used to create new materials, ...

page 1 from 10

Corrosion

Corrosion is the disintegration of an engineered material into its constituent atoms due to chemical reactions with its surroundings. In the most common use of the word, this means electrochemical oxidation of metals in reaction with an oxidant such as oxygen. Formation of an oxide of iron due to oxidation of the iron atoms in solid solution is a well-known example of electrochemical corrosion, commonly known as rusting. This type of damage typically produces oxide(s) and/or salt(s) of the original metal. Corrosion can also occur in materials other than metals, such as ceramics or polymers, although in this context, the term degradation is more common.

In other words, corrosion is the wearing away of metals due to a chemical reaction.

Many structural alloys corrode merely from exposure to moisture in the air, but the process can be strongly affected by exposure to certain substances (see below). Corrosion can be concentrated locally to form a pit or crack, or it can extend across a wide area more or less uniformly corroding the surface. Because corrosion is a diffusion controlled process, it occurs on exposed surfaces. As a result, methods to reduce the activity of the exposed surface, such as passivation and chromate-conversion, can increase a material's corrosion resistance. However, some corrosion mechanisms are less visible and less predictable.

This text uses material from Wikipedia, licensed under CC BY-SA