Researchers have fabricated two types of trilayer graphene with different electrical properties

February 12, 2018, Tohoku University
Stacking on the graphene
The schematic crystal structures of (a) ABA- and (b) ABC- stacked three layer graphene. Credit: Katsuaki Sugawara

Researchers in Japan have found a way to form two materials, each made of three layers of graphene. Each material's graphene is stacked differently and has unique electrical properties. Their work has implications for the development of novel electronic devices, such as photo sensors that convert light into electrical energy.

In 2004, two scientists realized they had isolated a single of carbon atoms on Scotch tape used to clean a graphite crystal. Since then, has captured the imagination of researchers due to its fascinating properties. It is 200 times stronger than steel, is very flexible, and it is an excellent conductor of electricity.

Graphene's are arranged into hexagons, forming a honeycomb-like lattice. Placing one layer of graphene on top of another leads to the formation of bilayer graphene. The layers can be arranged in one of two positions: the centres of the carbon hexagons of each layer can be organized immediately above one another, called AA-stacking, or they can be displaced forwards so that a hexagon centre in one layer is above a carbon atom below it, called AB-stacking. AB-stacking of two layers of graphene leads to the formation of a material with semiconducting properties by applying an external electric field.

Deliberately stacking three layers of graphene has proven difficult. But doing so could help researchers study how the physical properties of tri-layered materials change based on stacking orientation. This could lead to the development of novel electrical devices. Researchers at Japan's Tohoku University and Nagoya University have now fabricated two different types of trilayer graphene with different electrical properties.

They heated silicon carbide using one of two methods. In one experiment, silicon carbide was heated to 1,510°C under pressurized argon. In another, it was heated to 1,300°C in a high vacuum. Both were then sprayed with hydrogen gas in which the bonds were broken to form single hydrogen atoms. Two types of trilayer graphene then formed. The silicon carbide heated under pressurized argon formed into ABA-stacked graphene, in which the hexagons of the top and bottom layers were exactly aligned while the middle layer was slightly displaced. The heated in a vacuum developed into ABC-stacked graphene, in which each layer was slightly displaced in front of the one below it.

The researchers then examined the of each material and found that their electrons behaved differently. The ABA graphene was an excellent electrical conductor, similar to monolayer graphene. The ABC graphene, on the other hand, acts more like AB graphene in that it had semi-conductor properties.

"The present success in selective fabrication of ABA and ABC trilayer graphene would widen the feasibility of graphene-based nano-electronic devices with variable layer numbers and stacking sequences," conclude the researchers in their study published in the journal NPG Asia Materials.

Explore further: New insights on graphene

More information: Selective fabrication of free-standing ABA and ABC trilayer graphene with/without Dirac-cone energy bands, K. Sugawara, N. Yamamura, K. Matsuda, W. Norimatsu, M. Kusunoki, T. Sato and T. Takahashi, NPG Asia Materials, DOI: 10.1038/am.2017.238

Related Stories

New insights on graphene

December 21, 2017

Graphene floating on water does not repel water, as many researchers believe, but rather attracts it. This has been demonstrated by chemists Liubov Belyaeva and Pauline van Deursen and their supervisor Grégory F. Schneider. ...

Scientists move graphene closer to transistor applications

August 29, 2017

Scientists at the U.S. Department of Energy's Ames Laboratory were able to successfully manipulate the electronic structure of graphene, which may enable the fabrication of graphene transistors— faster and more reliable ...

Graphene on silicon carbide can store energy

May 23, 2017

By introducing defects into the perfect surface of graphene on silicon carbide, researchers at Linköping University in Sweden have increased the capacity of the material to store electrical charge. This result, which has ...

Adding hydrogen to graphene

November 3, 2016

Adding hydrogen to graphene could improve its future applicability in the semiconductor industry, when silicon leaves off. Researchers at the Center for Multidimensional Carbon Materials (CMCM), within the Institute for Basic ...

Topographical approaches to measuring graphene thickness

September 28, 2012

(Phys.org)—Graphene has long shown potential for use in electronics, but difficulties in producing the material to a high enough quality has so far prevented the commercialisation of graphene-based devices.

New method of characterizing graphene

May 30, 2017

Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other ...

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.