Activating the dark side reveals brighter nano 'building blocks'

February 20, 2018, University of Technology, Sydney
Credit: UTS Institute for Biomedical Materials and Devices

Scientists working to make nanoparticles even smaller, whilst retaining their useful optical properties, believe they have discovered a way to overcome a fundamental physical restraint known as "thermal quenching".

The researchers, from UTS Institute for Biomedical Materials and Devices (IBMD), believe this discovery removes an obstacle to further improvements in resolution and sensitivity in areas such as display technologies, security inks, and bio-imaging, with the potential to stimulate manufacturing innovations in Australia.

To overcome the quenching that dims the brightness of ultra-small , the UTS physicists developed a new type of nanoparticle called "thermal dots". By harvesting heat and thermal energy, and converting this energy to more light emissions, the researchers demonstrated a 1000 fold increase in the brightness of the nanoparticles.

Published in Nature Photonics, lead author Dr. Jiajia Zhou from the UTS Institute for Biomedical Materials and Devices (IBMD), says this discovery "allows us to demonstrate the smallest thermometer, only 10nm smaller than the size of a single molecule, to measure the nanoscale localised temperature changes using light."

Professor Dayong Jin, Director of IBMD, says that as the demand for smaller devices with more and more integrated functionalities grows, so too does the need for smaller and brighter "building blocks" for these technologies.

Dr Jiajia Zhou. Credit: Marea Martlew
"However nanoparticles have a 'tricky' surface layer that is very challenging to understand," Professor Jin says.

"The smaller the nanoparticle the larger the surface area, and below 10nm the huge surface to volume ratio results in a dark layer that is optically inactive.

"We discovered that this dark layer is sensitive to temperature allowing us to find a new way to activate the intensity and prove that nanoparticles below 10nm can still efficiently fluoresce," Professor Jin says.

Dr. Zhou, who received funding for this project from the Australian Research Council as a DECRA Research Fellow, shows that the thermal dots can be used to make security inks for fraud detection and anti-counterfeiting applications.

"This discovery also highlights the potential for new types of nanosensors for early disease diagnosis, including highly sensitive nanothermometers that can provide a non-invasive way to answer many biological questions at the nanoscale, such as how cells develop and differentiate in cancer," Dr. Zhou says.

"The potential for this approach is very broad and could also be applied to significantly improve the efficiency of organic solar cell films and light displays that use micro LEDs."

Explore further: Researchers invent light-emitting nanoantennas

More information: Jiajia Zhou et al. Activation of the surface dark-layer to enhance upconversion in a thermal field, Nature Photonics (2018). DOI: 10.1038/s41566-018-0108-5

Related Stories

Researchers invent light-emitting nanoantennas

February 19, 2018

Scientists from ITMO University have developed effective nanoscale light sources based on halide perovskite. Such nanosources are based on subwavelength nanoparticles serving both as emitters and nanoantennas and allow enhancing ...

Atomic blasting creates new devices to measure nanoparticles

December 14, 2017

Like sandblasting at the nanometer scale, focused beams of ions ablate hard materials to form intricate three-dimensional patterns. The beams can create tiny features in the lateral dimensions—length and width, but to create ...

Recommended for you

In colliding galaxies, a pipsqueak shines bright

February 20, 2019

In the nearby Whirlpool galaxy and its companion galaxy, M51b, two supermassive black holes heat up and devour surrounding material. These two monsters should be the most luminous X-ray sources in sight, but a new study using ...

When does one of the central ideas in economics work?

February 20, 2019

The concept of equilibrium is one of the most central ideas in economics. It is one of the core assumptions in the vast majority of economic models, including models used by policymakers on issues ranging from monetary policy ...

Research reveals why the zebra got its stripes

February 20, 2019

Why do zebras have stripes? A study published in PLOS ONE today takes us another step closer to answering this puzzling question and to understanding how stripes actually work.

Correlated nucleons may solve 35-year-old mystery

February 20, 2019

A careful re-analysis of data taken at the Department of Energy's Thomas Jefferson National Accelerator Facility has revealed a possible link between correlated protons and neutrons in the nucleus and a 35-year-old mystery. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.