New approach could quickly identify best organic solar cell mixtures

February 5, 2018, North Carolina State University

An international team of researchers has discovered a new quantitative relation that allows for quick identification of promising material combinations for organic solar cells. The discovery could significantly reduce the "trial and error" aspect of solar cell production by reducing the time spent on finding the most efficient mixtures. The research appears in Nature Materials.

Presently, chemists working to design more efficient organic solar rely heavily on "post-mortem" or post-manufacture analysis of the distribution of the constituent of the cells they produce. In other words, if they want to see how the donor and acceptor molecules within the solar cell mix and interact, they must first create the mixture and produce samples that are examined on the molecular level. The high-performance solar cells we have now, for example, were created through a labor-intensive, trial-and-error approach of developing over 1,000 material combinations and looking at the optimal processing conditions for each one.

"Forces between molecules within a solar cell's layers govern how much they will mix - if they are very interactive they will mix but if they are repulsive they won't," says Harald Ade, Goodnight Innovation Distinguished Professor of Physics at NC State and corresponding author of the paper. "Efficient solar cells are a delicate balance. If the domains mix too much or too little, the charges can't separate or be harvested effectively. We know that attraction and repulsion depend on , much like sugar dissolving in coffee - the saturation, or maximum mixing of the sugar with the coffee, improves as the temperature increases."

Ade, with postdoctoral researcher and first author Long Ye from NC State and chemist He Yan from the Hong Kong University of Science and Technology, set out to determine at what temperature these systems transform from two separate materials to one homogenous mixture in . Utilizing secondary ion mass spectrometry and X-ray microscopy, the team was able to look at molecular interactions at different temperatures to see when the phase change occurs. X-ray scattering allowed them to examine the purity of the domains. The end result was a parameter and quantitative model that describes domain mixing as a function of temperature and that can be used to evaluate different mixtures.

"We figured out the saturation level of the 'sugar in the coffee' as a function of temperature," Ade says. "This parameter gives chemists the solubility limit of the system, which will enable them to determine which processing temperature will give optimum performance with the largest processing window."

"In the past, people mainly studied this parameter in systems at room temperature using crude approximations. They couldn't measure it with precision and at temperatures corresponding to processing conditions, which are much hotter," says Ye. "The ability to measure and model this parameter will also offer valuable lessons about processing and not just material pairs. In principle, our method can do this for a given organic mixture at any temperature during the manufacturing process."

"Currently chemists modify a molecule and use trials to see if it is a good material for , but if they have the wrong processing conditions they could miss a lot of good materials," Ade says. "Our parameter measures the saturation level so they could determine whether the material system is good before they manufacture devices. Our ultimate goal is to form a framework and experimental basis on which chemical structural variation might be evaluated by simulations on the computer before laborious synthesis is attempted."

Explore further: New materials yield record efficiency polymer solar cells

More information: Long Ye et al, Quantitative relations between interaction parameter, miscibility and function in organic solar cells, Nature Materials (2018). DOI: 10.1038/s41563-017-0005-1

Related Stories

New materials yield record efficiency polymer solar cells

November 10, 2014

Researchers from North Carolina State University and Hong Kong University of Science and Technology have found that temperature-controlled aggregation in a family of new semi-conducting polymers is the key to creating highly ...

A simple new approach to plastic solar cells

January 25, 2018

Humankind is in the midst of a massive drive to harness solar energy to power our homes, gadgets, and industry. Plastic solar cells, based on blends of conducting organic polymers, are of interest for making lightweight and ...

Domain size and purity key to efficient organic solar cells

December 14, 2015

As solar energy becomes more popular, the drive to create more efficient, less expensive solar cells increases. Solar energy is abundant, but the devices we use to collect that energy have an efficiency problem – currently, ...

Driving toward more efficient solar cells

July 11, 2016

For solar energy to become a real power player in the energy game, solar cells need to be both inexpensive to manufacture and efficient in terms of energy they collect. That's why researchers are focusing their efforts on ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.